与えられた根号を含む式の乗除計算(問題4)と加減計算(問題5)を行う。算数平方根根号計算2025/5/191. 問題の内容与えられた根号を含む式の乗除計算(問題4)と加減計算(問題5)を行う。2. 解き方の手順**問題4**(1) 14×5=14×5=70\sqrt{14} \times \sqrt{5} = \sqrt{14 \times 5} = \sqrt{70}14×5=14×5=70(2) 27×8=27×8=216=36×6=66\sqrt{27} \times \sqrt{8} = \sqrt{27 \times 8} = \sqrt{216} = \sqrt{36 \times 6} = 6\sqrt{6}27×8=27×8=216=36×6=66(3) 6×42=6×42=252=36×7=67\sqrt{6} \times \sqrt{42} = \sqrt{6 \times 42} = \sqrt{252} = \sqrt{36 \times 7} = 6\sqrt{7}6×42=6×42=252=36×7=67(4) 32×2=32×2=64=8\sqrt{32} \times \sqrt{2} = \sqrt{32 \times 2} = \sqrt{64} = 832×2=32×2=64=8(5) 75÷3=753=25=5\sqrt{75} \div \sqrt{3} = \sqrt{\frac{75}{3}} = \sqrt{25} = 575÷3=375=25=5(6) 65÷6=656=6566=306\sqrt{5} \div \sqrt{6} = \frac{6\sqrt{5}}{\sqrt{6}} = \frac{6\sqrt{5}\sqrt{6}}{6} = \sqrt{30}65÷6=665=6656=30**問題5**(1) 82+42=(8+4)2=1228\sqrt{2} + 4\sqrt{2} = (8+4)\sqrt{2} = 12\sqrt{2}82+42=(8+4)2=122(2) 83−53=(8−5)3=338\sqrt{3} - 5\sqrt{3} = (8-5)\sqrt{3} = 3\sqrt{3}83−53=(8−5)3=33(3) 45+37−25+7=(4−2)5+(3+1)7=25+474\sqrt{5} + 3\sqrt{7} - 2\sqrt{5} + \sqrt{7} = (4-2)\sqrt{5} + (3+1)\sqrt{7} = 2\sqrt{5} + 4\sqrt{7}45+37−25+7=(4−2)5+(3+1)7=25+47(4) 43−36−3+26=(4−1)3+(−3+2)6=33−64\sqrt{3} - 3\sqrt{6} - \sqrt{3} + 2\sqrt{6} = (4-1)\sqrt{3} + (-3+2)\sqrt{6} = 3\sqrt{3} - \sqrt{6}43−36−3+26=(4−1)3+(−3+2)6=33−6(5) 32+8=16×2+4×2=42+22=(4+2)2=62\sqrt{32} + \sqrt{8} = \sqrt{16 \times 2} + \sqrt{4 \times 2} = 4\sqrt{2} + 2\sqrt{2} = (4+2)\sqrt{2} = 6\sqrt{2}32+8=16×2+4×2=42+22=(4+2)2=62(6) 45−20=9×5−4×5=35−25=(3−2)5=5\sqrt{45} - \sqrt{20} = \sqrt{9 \times 5} - \sqrt{4 \times 5} = 3\sqrt{5} - 2\sqrt{5} = (3-2)\sqrt{5} = \sqrt{5}45−20=9×5−4×5=35−25=(3−2)5=5(7) 5(10−1)=50−5=25×2−5=52−5\sqrt{5}(\sqrt{10}-1) = \sqrt{50} - \sqrt{5} = \sqrt{25 \times 2} - \sqrt{5} = 5\sqrt{2} - \sqrt{5}5(10−1)=50−5=25×2−5=52−53. 最終的な答え**問題4**(1) 70\sqrt{70}70(2) 666\sqrt{6}66(3) 676\sqrt{7}67(4) 888(5) 555(6) 30\sqrt{30}30**問題5**(1) 12212\sqrt{2}122(2) 333\sqrt{3}33(3) 25+472\sqrt{5} + 4\sqrt{7}25+47(4) 33−63\sqrt{3} - \sqrt{6}33−6(5) 626\sqrt{2}62(6) 5\sqrt{5}5(7) 52−55\sqrt{2} - \sqrt{5}52−5