First, we factor the denominator:
x4+5x2+4=(x2+1)(x2+4). Then, we factor the numerator:
x2+x−2=(x+2)(x−1). So, we have
J=∫(x2+1)(x2+4)(x+2)(x−1)dx=∫(x2+1)(x2+4)x2+x−2dx. Next, we perform partial fraction decomposition:
(x2+1)(x2+4)x2+x−2=x2+1Ax+B+x2+4Cx+D. Multiplying both sides by (x2+1)(x2+4), we get: x2+x−2=(Ax+B)(x2+4)+(Cx+D)(x2+1). x2+x−2=Ax3+4Ax+Bx2+4B+Cx3+Cx+Dx2+D. x2+x−2=(A+C)x3+(B+D)x2+(4A+C)x+(4B+D). Equating coefficients, we have the following system of equations:
From the first equation, C=−A. Substituting into the third equation, 4A−A=1, so 3A=1, and A=31. Thus, C=−31. From the second equation, D=1−B. Substituting into the fourth equation, 4B+1−B=−2, so 3B=−3, and B=−1. Thus, D=1−(−1)=2. So, we have A=31,B=−1,C=−31,D=2. Thus,
(x2+1)(x2+4)x2+x−2=x2+131x−1+x2+4−31x+2. J=∫(x2+131x−x2+11−x2+431x+x2+42)dx J=31∫x2+1xdx−∫x2+11dx−31∫x2+4xdx+2∫x2+41dx J=61ln(x2+1)−arctan(x)−61ln(x2+4)+arctan(2x)+C.