We need to evaluate the definite integral $J = \int \frac{x^2+x-2}{x^4+5x^2+4} dx$.

AnalysisDefinite IntegralPartial Fraction DecompositionIntegrationCalculus
2025/5/19

1. Problem Description

We need to evaluate the definite integral
J=x2+x2x4+5x2+4dxJ = \int \frac{x^2+x-2}{x^4+5x^2+4} dx.

2. Solution Steps

First, we factor the denominator:
x4+5x2+4=(x2+1)(x2+4)x^4 + 5x^2 + 4 = (x^2+1)(x^2+4).
Then, we factor the numerator:
x2+x2=(x+2)(x1)x^2+x-2 = (x+2)(x-1).
So, we have
J=(x+2)(x1)(x2+1)(x2+4)dx=x2+x2(x2+1)(x2+4)dxJ = \int \frac{(x+2)(x-1)}{(x^2+1)(x^2+4)} dx = \int \frac{x^2+x-2}{(x^2+1)(x^2+4)} dx.
Next, we perform partial fraction decomposition:
x2+x2(x2+1)(x2+4)=Ax+Bx2+1+Cx+Dx2+4\frac{x^2+x-2}{(x^2+1)(x^2+4)} = \frac{Ax+B}{x^2+1} + \frac{Cx+D}{x^2+4}.
Multiplying both sides by (x2+1)(x2+4)(x^2+1)(x^2+4), we get:
x2+x2=(Ax+B)(x2+4)+(Cx+D)(x2+1)x^2+x-2 = (Ax+B)(x^2+4) + (Cx+D)(x^2+1).
x2+x2=Ax3+4Ax+Bx2+4B+Cx3+Cx+Dx2+Dx^2+x-2 = Ax^3 + 4Ax + Bx^2 + 4B + Cx^3 + Cx + Dx^2 + D.
x2+x2=(A+C)x3+(B+D)x2+(4A+C)x+(4B+D)x^2+x-2 = (A+C)x^3 + (B+D)x^2 + (4A+C)x + (4B+D).
Equating coefficients, we have the following system of equations:
A+C=0A+C = 0
B+D=1B+D = 1
4A+C=14A+C = 1
4B+D=24B+D = -2
From the first equation, C=AC = -A.
Substituting into the third equation, 4AA=14A - A = 1, so 3A=13A = 1, and A=13A = \frac{1}{3}.
Thus, C=13C = -\frac{1}{3}.
From the second equation, D=1BD = 1-B.
Substituting into the fourth equation, 4B+1B=24B + 1 - B = -2, so 3B=33B = -3, and B=1B = -1.
Thus, D=1(1)=2D = 1 - (-1) = 2.
So, we have A=13,B=1,C=13,D=2A = \frac{1}{3}, B = -1, C = -\frac{1}{3}, D = 2.
Thus,
x2+x2(x2+1)(x2+4)=13x1x2+1+13x+2x2+4\frac{x^2+x-2}{(x^2+1)(x^2+4)} = \frac{\frac{1}{3}x-1}{x^2+1} + \frac{-\frac{1}{3}x+2}{x^2+4}.
J=(13xx2+11x2+113xx2+4+2x2+4)dxJ = \int \left( \frac{\frac{1}{3}x}{x^2+1} - \frac{1}{x^2+1} - \frac{\frac{1}{3}x}{x^2+4} + \frac{2}{x^2+4} \right) dx
J=13xx2+1dx1x2+1dx13xx2+4dx+21x2+4dxJ = \frac{1}{3} \int \frac{x}{x^2+1} dx - \int \frac{1}{x^2+1} dx - \frac{1}{3} \int \frac{x}{x^2+4} dx + 2 \int \frac{1}{x^2+4} dx
J=16ln(x2+1)arctan(x)16ln(x2+4)+arctan(x2)+CJ = \frac{1}{6} \ln(x^2+1) - \arctan(x) - \frac{1}{6} \ln(x^2+4) + \arctan(\frac{x}{2}) + C.

3. Final Answer

J=16ln(x2+1)arctan(x)16ln(x2+4)+arctan(x2)+CJ = \frac{1}{6} \ln(x^2+1) - \arctan(x) - \frac{1}{6} \ln(x^2+4) + \arctan(\frac{x}{2}) + C
J=16ln(x2+1x2+4)arctan(x)+arctan(x2)+CJ = \frac{1}{6}\ln\left(\frac{x^2+1}{x^2+4}\right) - \arctan(x) + \arctan(\frac{x}{2}) + C

Related problems in "Analysis"

The problem asks us to find all first partial derivatives of the given functions. We will solve pro...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

We are asked to find the first partial derivatives of the given functions. 3. $f(x, y) = \frac{x^2 -...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

The problem asks us to find all first partial derivatives of each function given. Let's solve proble...

Partial DerivativesChain RuleMultivariable Calculus
2025/6/4

The problem is to evaluate the indefinite integral of $x^n$ with respect to $x$, i.e., $\int x^n \, ...

IntegrationIndefinite IntegralPower Rule
2025/6/4

We need to find the limit of the function $x + \sqrt{x^2 + 9}$ as $x$ approaches negative infinity. ...

LimitsFunctionsCalculusInfinite LimitsConjugate
2025/6/2

The problem asks to evaluate the definite integral $\int_{2}^{4} \sqrt{x-2} \, dx$.

Definite IntegralIntegrationPower RuleCalculus
2025/6/2

The problem asks us to find the derivative of the function $y = \sqrt{\sin^{-1}(x)}$.

DerivativesChain RuleInverse Trigonometric Functions
2025/6/2

The problem asks us to find the slope of the tangent line to the polar curves at $\theta = \frac{\pi...

CalculusPolar CoordinatesDerivativesTangent Lines
2025/6/1

We are asked to change the given integral to polar coordinates and then evaluate it. The given integ...

Multiple IntegralsChange of VariablesPolar CoordinatesIntegration Techniques
2025/5/30

We are asked to evaluate the triple integral $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z...

Multiple IntegralsTriple IntegralIntegration
2025/5/29