We are asked to find a formula for each of the given summations: a) $\sum_{i=1}^{n} (\sqrt{2i+1} - \sqrt{2i-1})$ b) $\sum_{k=1}^{100} \ln(\frac{k}{k+2})$ c) $\sum_{k=1}^{n} \frac{4}{(4k-3)(4k+1)}$ d) $\sum_{k=1}^{n} \frac{2^k+3^k}{6^k}$ e) $\sum_{k=1}^{n} \frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k^2+k}}$

AnalysisSummationSeriesTelescoping SumGeometric SeriesLogarithmsPartial Fractions
2025/5/20

1. Problem Description

We are asked to find a formula for each of the given summations:
a) i=1n(2i+12i1)\sum_{i=1}^{n} (\sqrt{2i+1} - \sqrt{2i-1})
b) k=1100ln(kk+2)\sum_{k=1}^{100} \ln(\frac{k}{k+2})
c) k=1n4(4k3)(4k+1)\sum_{k=1}^{n} \frac{4}{(4k-3)(4k+1)}
d) k=1n2k+3k6k\sum_{k=1}^{n} \frac{2^k+3^k}{6^k}
e) k=1nk+1kk2+k\sum_{k=1}^{n} \frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k^2+k}}

2. Solution Steps

a) i=1n(2i+12i1)\sum_{i=1}^{n} (\sqrt{2i+1} - \sqrt{2i-1})
This is a telescoping sum.
i=1n(2i+12i1)=(31)+(53)+(75)++(2n+12n1)\sum_{i=1}^{n} (\sqrt{2i+1} - \sqrt{2i-1}) = (\sqrt{3} - \sqrt{1}) + (\sqrt{5} - \sqrt{3}) + (\sqrt{7} - \sqrt{5}) + \dots + (\sqrt{2n+1} - \sqrt{2n-1})
The terms cancel out, leaving us with 2n+11=2n+11\sqrt{2n+1} - \sqrt{1} = \sqrt{2n+1} - 1.
b) k=1100ln(kk+2)\sum_{k=1}^{100} \ln(\frac{k}{k+2})
Using the logarithm property ln(ab)=ln(a)ln(b)\ln(\frac{a}{b}) = \ln(a) - \ln(b), we have
k=1100ln(kk+2)=k=1100(ln(k)ln(k+2))\sum_{k=1}^{100} \ln(\frac{k}{k+2}) = \sum_{k=1}^{100} (\ln(k) - \ln(k+2))
This is also a telescoping sum.
=(ln(1)ln(3))+(ln(2)ln(4))+(ln(3)ln(5))++(ln(99)ln(101))+(ln(100)ln(102))= (\ln(1) - \ln(3)) + (\ln(2) - \ln(4)) + (\ln(3) - \ln(5)) + \dots + (\ln(99) - \ln(101)) + (\ln(100) - \ln(102))
=ln(1)+ln(2)ln(101)ln(102)=ln(1)+ln(2)ln(101102)= \ln(1) + \ln(2) - \ln(101) - \ln(102) = \ln(1) + \ln(2) - \ln(101 \cdot 102)
Since ln(1)=0\ln(1) = 0, the sum is ln(2)ln(10302)=ln(210302)=ln(15151)\ln(2) - \ln(10302) = \ln(\frac{2}{10302}) = \ln(\frac{1}{5151})
c) k=1n4(4k3)(4k+1)\sum_{k=1}^{n} \frac{4}{(4k-3)(4k+1)}
We can decompose the fraction into partial fractions.
4(4k3)(4k+1)=A4k3+B4k+1\frac{4}{(4k-3)(4k+1)} = \frac{A}{4k-3} + \frac{B}{4k+1}
4=A(4k+1)+B(4k3)4 = A(4k+1) + B(4k-3)
Let k=34k = \frac{3}{4}. Then 4=A(3+1)+B(0)    4=4A    A=14 = A(3+1) + B(0) \implies 4 = 4A \implies A = 1
Let k=14k = -\frac{1}{4}. Then 4=A(0)+B(13)    4=4B    B=14 = A(0) + B(-1-3) \implies 4 = -4B \implies B = -1
So, 4(4k3)(4k+1)=14k314k+1\frac{4}{(4k-3)(4k+1)} = \frac{1}{4k-3} - \frac{1}{4k+1}
k=1n4(4k3)(4k+1)=k=1n(14k314k+1)\sum_{k=1}^{n} \frac{4}{(4k-3)(4k+1)} = \sum_{k=1}^{n} (\frac{1}{4k-3} - \frac{1}{4k+1})
This is a telescoping sum.
=(1115)+(1519)+(19113)++(14n314n+1)=114n+1=4n+114n+1=4n4n+1= (\frac{1}{1} - \frac{1}{5}) + (\frac{1}{5} - \frac{1}{9}) + (\frac{1}{9} - \frac{1}{13}) + \dots + (\frac{1}{4n-3} - \frac{1}{4n+1}) = 1 - \frac{1}{4n+1} = \frac{4n+1-1}{4n+1} = \frac{4n}{4n+1}
d) k=1n2k+3k6k=k=1n(2k6k+3k6k)=k=1n(13k+12k)=k=1n(13)k+k=1n(12)k\sum_{k=1}^{n} \frac{2^k+3^k}{6^k} = \sum_{k=1}^{n} (\frac{2^k}{6^k} + \frac{3^k}{6^k}) = \sum_{k=1}^{n} (\frac{1}{3^k} + \frac{1}{2^k}) = \sum_{k=1}^{n} (\frac{1}{3})^k + \sum_{k=1}^{n} (\frac{1}{2})^k
Using the formula for the sum of a geometric series k=1nark1=a1rn1r\sum_{k=1}^{n} ar^{k-1} = a\frac{1-r^n}{1-r}, we have k=1nrk=r(1rn)1r\sum_{k=1}^{n} r^k = \frac{r(1-r^n)}{1-r}.
k=1n(13)k=13(1(13)n)113=13(113n)23=12(113n)\sum_{k=1}^{n} (\frac{1}{3})^k = \frac{\frac{1}{3}(1-(\frac{1}{3})^n)}{1-\frac{1}{3}} = \frac{\frac{1}{3}(1-\frac{1}{3^n})}{\frac{2}{3}} = \frac{1}{2}(1-\frac{1}{3^n})
k=1n(12)k=12(1(12)n)112=12(112n)12=112n\sum_{k=1}^{n} (\frac{1}{2})^k = \frac{\frac{1}{2}(1-(\frac{1}{2})^n)}{1-\frac{1}{2}} = \frac{\frac{1}{2}(1-\frac{1}{2^n})}{\frac{1}{2}} = 1-\frac{1}{2^n}
k=1n2k+3k6k=12(113n)+112n=12123n+112n=32123n12n\sum_{k=1}^{n} \frac{2^k+3^k}{6^k} = \frac{1}{2}(1-\frac{1}{3^n}) + 1 - \frac{1}{2^n} = \frac{1}{2} - \frac{1}{2 \cdot 3^n} + 1 - \frac{1}{2^n} = \frac{3}{2} - \frac{1}{2 \cdot 3^n} - \frac{1}{2^n}
e) k=1nk+1kk2+k=k=1nk+1kkk+1=k=1n(k+1kk+1kkk+1)=k=1n(1k1k+1)\sum_{k=1}^{n} \frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k^2+k}} = \sum_{k=1}^{n} \frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k}\sqrt{k+1}} = \sum_{k=1}^{n} (\frac{\sqrt{k+1}}{\sqrt{k}\sqrt{k+1}} - \frac{\sqrt{k}}{\sqrt{k}\sqrt{k+1}}) = \sum_{k=1}^{n} (\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}})
This is a telescoping sum.
=(1112)+(1213)++(1n1n+1)=111n+1=11n+1= (\frac{1}{\sqrt{1}} - \frac{1}{\sqrt{2}}) + (\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}}) + \dots + (\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}) = \frac{1}{\sqrt{1}} - \frac{1}{\sqrt{n+1}} = 1 - \frac{1}{\sqrt{n+1}}

3. Final Answer

a) 2n+11\sqrt{2n+1} - 1
b) ln(15151)\ln(\frac{1}{5151})
c) 4n4n+1\frac{4n}{4n+1}
d) 32123n12n\frac{3}{2} - \frac{1}{2 \cdot 3^n} - \frac{1}{2^n}
e) 11n+11 - \frac{1}{\sqrt{n+1}}

Related problems in "Analysis"

The problem asks us to find all first partial derivatives of the given functions. We will solve pro...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

We are asked to find the first partial derivatives of the given functions. 3. $f(x, y) = \frac{x^2 -...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

The problem asks us to find all first partial derivatives of each function given. Let's solve proble...

Partial DerivativesChain RuleMultivariable Calculus
2025/6/4

The problem is to evaluate the indefinite integral of $x^n$ with respect to $x$, i.e., $\int x^n \, ...

IntegrationIndefinite IntegralPower Rule
2025/6/4

We need to find the limit of the function $x + \sqrt{x^2 + 9}$ as $x$ approaches negative infinity. ...

LimitsFunctionsCalculusInfinite LimitsConjugate
2025/6/2

The problem asks to evaluate the definite integral $\int_{2}^{4} \sqrt{x-2} \, dx$.

Definite IntegralIntegrationPower RuleCalculus
2025/6/2

The problem asks us to find the derivative of the function $y = \sqrt{\sin^{-1}(x)}$.

DerivativesChain RuleInverse Trigonometric Functions
2025/6/2

The problem asks us to find the slope of the tangent line to the polar curves at $\theta = \frac{\pi...

CalculusPolar CoordinatesDerivativesTangent Lines
2025/6/1

We are asked to change the given integral to polar coordinates and then evaluate it. The given integ...

Multiple IntegralsChange of VariablesPolar CoordinatesIntegration Techniques
2025/5/30

We are asked to evaluate the triple integral $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z...

Multiple IntegralsTriple IntegralIntegration
2025/5/29