We are asked to evaluate two integrals: a) $\int \frac{1}{(x+3)(x+6)} dx$ b) $\int \frac{1}{(x^{1/2})(x^{1/2})} dx$

AnalysisIntegrationCalculusPartial FractionsDefinite IntegralsIndefinite Integrals
2025/5/20

1. Problem Description

We are asked to evaluate two integrals:
a) 1(x+3)(x+6)dx\int \frac{1}{(x+3)(x+6)} dx
b) 1(x1/2)(x1/2)dx\int \frac{1}{(x^{1/2})(x^{1/2})} dx

2. Solution Steps

a) We can use partial fraction decomposition to evaluate the integral.
1(x+3)(x+6)=Ax+3+Bx+6\frac{1}{(x+3)(x+6)} = \frac{A}{x+3} + \frac{B}{x+6}
1=A(x+6)+B(x+3)1 = A(x+6) + B(x+3)
Let x=3x = -3:
1=A(3+6)+B(3+3)1 = A(-3+6) + B(-3+3)
1=3A1 = 3A
A=13A = \frac{1}{3}
Let x=6x = -6:
1=A(6+6)+B(6+3)1 = A(-6+6) + B(-6+3)
1=3B1 = -3B
B=13B = -\frac{1}{3}
Thus,
1(x+3)(x+6)=1/3x+31/3x+6\frac{1}{(x+3)(x+6)} = \frac{1/3}{x+3} - \frac{1/3}{x+6}
Now we can integrate:
1(x+3)(x+6)dx=(1/3x+31/3x+6)dx\int \frac{1}{(x+3)(x+6)} dx = \int \left( \frac{1/3}{x+3} - \frac{1/3}{x+6} \right) dx
=131x+3dx131x+6dx= \frac{1}{3} \int \frac{1}{x+3} dx - \frac{1}{3} \int \frac{1}{x+6} dx
=13lnx+313lnx+6+C= \frac{1}{3} \ln|x+3| - \frac{1}{3} \ln|x+6| + C
=13(lnx+3lnx+6)+C= \frac{1}{3} (\ln|x+3| - \ln|x+6|) + C
=13lnx+3x+6+C= \frac{1}{3} \ln \left| \frac{x+3}{x+6} \right| + C
b) The integral is 1x1/2x1/2dx=1xdx\int \frac{1}{x^{1/2} x^{1/2}} dx = \int \frac{1}{x} dx.
1xdx=lnx+C\int \frac{1}{x} dx = \ln|x| + C

3. Final Answer

a) 13lnx+3x+6+C\frac{1}{3} \ln \left| \frac{x+3}{x+6} \right| + C
b) lnx+C\ln|x| + C

Related problems in "Analysis"

We need to find the limit of the function $x + \sqrt{x^2 + 9}$ as $x$ approaches negative infinity. ...

LimitsFunctionsCalculusInfinite LimitsConjugate
2025/6/2

The problem asks to evaluate the definite integral $\int_{2}^{4} \sqrt{x-2} \, dx$.

Definite IntegralIntegrationPower RuleCalculus
2025/6/2

The problem asks us to find the derivative of the function $y = \sqrt{\sin^{-1}(x)}$.

DerivativesChain RuleInverse Trigonometric Functions
2025/6/2

The problem asks us to find the slope of the tangent line to the polar curves at $\theta = \frac{\pi...

CalculusPolar CoordinatesDerivativesTangent Lines
2025/6/1

We are asked to change the given integral to polar coordinates and then evaluate it. The given integ...

Multiple IntegralsChange of VariablesPolar CoordinatesIntegration Techniques
2025/5/30

We are asked to evaluate the triple integral $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z...

Multiple IntegralsTriple IntegralIntegration
2025/5/29

We need to find the limit of the given expression as $x$ approaches infinity: $\lim_{x \to \infty} \...

LimitsCalculusAsymptotic Analysis
2025/5/29

We are asked to find the limit of the expression $\frac{2x - \sqrt{2x^2 - 1}}{4x - 3\sqrt{x^2 + 2}}$...

LimitsCalculusRationalizationAlgebraic Manipulation
2025/5/29

We are asked to find the limit of the given expression as $x$ approaches infinity: $\lim_{x\to\infty...

LimitsCalculusSequences and SeriesRational Functions
2025/5/29

The problem asks us to find the limit as $x$ approaches infinity of the expression $\frac{2x - \sqrt...

LimitsCalculusAlgebraic ManipulationRationalizationSequences and Series
2025/5/29