We are asked to solve three limit problems: a) $\lim_{x \to 0} (2e^{3x} - xe^x + 2e^x + 4)$ b) Find $a$ such that $\lim_{x \to \infty} \frac{8x^2 + x + 1}{ax^2 + 1} = 1$ c) $\lim_{x \to 0} \frac{\sin x - \sin x \cos x}{x^3}$

AnalysisLimitsCalculusExponential FunctionsTrigonometric Functions
2025/5/20

1. Problem Description

We are asked to solve three limit problems:
a) limx0(2e3xxex+2ex+4)\lim_{x \to 0} (2e^{3x} - xe^x + 2e^x + 4)
b) Find aa such that limx8x2+x+1ax2+1=1\lim_{x \to \infty} \frac{8x^2 + x + 1}{ax^2 + 1} = 1
c) limx0sinxsinxcosxx3\lim_{x \to 0} \frac{\sin x - \sin x \cos x}{x^3}

2. Solution Steps

a) limx0(2e3xxex+2ex+4)\lim_{x \to 0} (2e^{3x} - xe^x + 2e^x + 4)
Since the function is continuous, we can substitute x=0x=0 directly:
2e3(0)(0)e0+2e0+4=2e00+2e0+4=2(1)+2(1)+4=2+2+4=82e^{3(0)} - (0)e^0 + 2e^0 + 4 = 2e^0 - 0 + 2e^0 + 4 = 2(1) + 2(1) + 4 = 2 + 2 + 4 = 8
b) limx8x2+x+1ax2+1=1\lim_{x \to \infty} \frac{8x^2 + x + 1}{ax^2 + 1} = 1
Divide the numerator and the denominator by x2x^2:
limx8+1x+1x2a+1x2=1\lim_{x \to \infty} \frac{8 + \frac{1}{x} + \frac{1}{x^2}}{a + \frac{1}{x^2}} = 1
As xx \to \infty, 1x0\frac{1}{x} \to 0 and 1x20\frac{1}{x^2} \to 0.
So, 8+0+0a+0=1\frac{8 + 0 + 0}{a + 0} = 1, which means 8a=1\frac{8}{a} = 1.
Therefore, a=8a = 8.
c) limx0sinxsinxcosxx3=limx0sinx(1cosx)x3\lim_{x \to 0} \frac{\sin x - \sin x \cos x}{x^3} = \lim_{x \to 0} \frac{\sin x (1 - \cos x)}{x^3}
We know that limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1 and 1cosx=2sin2(x2)1 - \cos x = 2 \sin^2(\frac{x}{2}).
So, limx0sinx(1cosx)x3=limx0sinx(2sin2(x2))x3=limx0sinxx2sin2(x2)x2=limx0sinxx2sin2(x2)4(x2)2=limx0sinxx24(sin(x2)x2)2\lim_{x \to 0} \frac{\sin x (1 - \cos x)}{x^3} = \lim_{x \to 0} \frac{\sin x (2 \sin^2(\frac{x}{2}))}{x^3} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{2 \sin^2(\frac{x}{2})}{x^2} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{2 \sin^2(\frac{x}{2})}{4(\frac{x}{2})^2} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{2}{4} \cdot (\frac{\sin(\frac{x}{2})}{\frac{x}{2}})^2
Since limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1 and limx0sin(x2)x2=1\lim_{x \to 0} \frac{\sin(\frac{x}{2})}{\frac{x}{2}} = 1,
limx0sinxsinxcosxx3=124(1)2=12\lim_{x \to 0} \frac{\sin x - \sin x \cos x}{x^3} = 1 \cdot \frac{2}{4} \cdot (1)^2 = \frac{1}{2}.

3. Final Answer

a) 8
b) 8
c) 1/2

Related problems in "Analysis"

The problem asks to prove that $\int_0^1 \ln(\frac{\varphi - x^2}{\varphi + x^2}) \frac{dx}{x\sqrt{1...

Definite IntegralsCalculusIntegration TechniquesTrigonometric SubstitutionImproper Integrals
2025/6/4

The problem defines a harmonic function as a function of two variables that satisfies Laplace's equa...

Partial DerivativesLaplace's EquationHarmonic FunctionMultivariable Calculus
2025/6/4

The problem asks us to find all first partial derivatives of the given functions. We will solve pro...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

We are asked to find the first partial derivatives of the given functions. 3. $f(x, y) = \frac{x^2 -...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

The problem asks us to find all first partial derivatives of each function given. Let's solve proble...

Partial DerivativesChain RuleMultivariable Calculus
2025/6/4

The problem is to evaluate the indefinite integral of $x^n$ with respect to $x$, i.e., $\int x^n \, ...

IntegrationIndefinite IntegralPower Rule
2025/6/4

We need to find the limit of the function $x + \sqrt{x^2 + 9}$ as $x$ approaches negative infinity. ...

LimitsFunctionsCalculusInfinite LimitsConjugate
2025/6/2

The problem asks to evaluate the definite integral $\int_{2}^{4} \sqrt{x-2} \, dx$.

Definite IntegralIntegrationPower RuleCalculus
2025/6/2

The problem asks us to find the derivative of the function $y = \sqrt{\sin^{-1}(x)}$.

DerivativesChain RuleInverse Trigonometric Functions
2025/6/2

The problem asks us to find the slope of the tangent line to the polar curves at $\theta = \frac{\pi...

CalculusPolar CoordinatesDerivativesTangent Lines
2025/6/1