We are asked to solve several math problems, including finding limits, probabilities, integrals, complex numbers, differential equations, and analytic geometry.

AnalysisLimitsProbabilityIntegrationCalculusDefinite IntegralsIndefinite Integrals
2025/5/20

1. Problem Description

We are asked to solve several math problems, including finding limits, probabilities, integrals, complex numbers, differential equations, and analytic geometry.

2. Solution Steps

a. Limits

1. lim(x->0) $(2e^{3x} - xe^x + 2e^2 + 4)$

Since the expression is continuous at x=0x=0, we can evaluate the limit by direct substitution:
2e3(0)(0)e0+2e2+4=2(1)0+2e2+4=6+2e22e^{3(0)} - (0)e^0 + 2e^2 + 4 = 2(1) - 0 + 2e^2 + 4 = 6 + 2e^2

2. lim(x->-infinity) $(x + \sqrt{x^2+9})$

We can multiply and divide by the conjugate:
lim(x->-infinity) (x+x2+9)xx2+9xx2+9=lim(x>infinity)x2(x2+9)xx2+9=lim(x>infinity)9xx2+9(x + \sqrt{x^2+9}) * \frac{x - \sqrt{x^2+9}}{x - \sqrt{x^2+9}} = lim(x->-infinity) \frac{x^2 - (x^2+9)}{x - \sqrt{x^2+9}} = lim(x->-infinity) \frac{-9}{x - \sqrt{x^2+9}}
Since x approaches negative infinity, x2=x=x\sqrt{x^2} = |x| = -x. Then,
lim(x>infinity)9xx2+9=lim(x>infinity)9xx2(1+9/x2)=lim(x>infinity)9xx1+9/x2=lim(x>infinity)9x(x)1+9/x2=lim(x>infinity)9x+x1+9/x2=lim(x>infinity)9x(1+1+9/x2)lim(x->-infinity) \frac{-9}{x - \sqrt{x^2+9}} = lim(x->-infinity) \frac{-9}{x - \sqrt{x^2(1 + 9/x^2)}} = lim(x->-infinity) \frac{-9}{x - |x|\sqrt{1 + 9/x^2}} = lim(x->-infinity) \frac{-9}{x - (-x)\sqrt{1 + 9/x^2}} = lim(x->-infinity) \frac{-9}{x + x\sqrt{1 + 9/x^2}} = lim(x->-infinity) \frac{-9}{x(1 + \sqrt{1 + 9/x^2})}
As xx approaches negative infinity, 9/x29/x^2 approaches

0. Then, the limit becomes

lim(x>infinity)9x(1+1)=lim(x>infinity)92x=0lim(x->-infinity) \frac{-9}{x(1 + \sqrt{1})} = lim(x->-infinity) \frac{-9}{2x} = 0

3. lim(x->0) $\frac{8x^2 + x + 1}{ax^2 + 1} = 1$

Since the limit exists and is equal to 1, we can directly substitute x=0:
8(0)2+0+1a(0)2+1=11=1\frac{8(0)^2 + 0 + 1}{a(0)^2 + 1} = \frac{1}{1} = 1
The expression is equal to 1 for all values of a.

4. lim(x->0) $\frac{sinx - sinxcosx}{x^3}$

sinxsinxcosxx3=sinx(1cosx)x3\frac{sinx - sinxcosx}{x^3} = \frac{sinx(1-cosx)}{x^3}.
We know that lim(x>0)sinxx=1lim(x->0) \frac{sinx}{x} = 1 and 1cosx=2sin2(x/2)1 - cosx = 2sin^2(x/2). Therefore,
lim(x>0)sinx(1cosx)x3=lim(x>0)sinxx2sin2(x/2)x2=12lim(x>0)sin2(x/2)x2=2lim(x>0)sin(x/2)xsin(x/2)xlim(x->0) \frac{sinx(1-cosx)}{x^3} = lim(x->0) \frac{sinx}{x} * \frac{2sin^2(x/2)}{x^2} = 1 * 2 * lim(x->0) \frac{sin^2(x/2)}{x^2} = 2 * lim(x->0) \frac{sin(x/2)}{x} * \frac{sin(x/2)}{x}
2lim(x>0)sin(x/2)xsin(x/2)x=2lim(x>0)sin(x/2)x/212sin(x/2)x/212=2112112=122 * lim(x->0) \frac{sin(x/2)}{x} * \frac{sin(x/2)}{x} = 2 * lim(x->0) \frac{sin(x/2)}{x/2} * \frac{1}{2} * \frac{sin(x/2)}{x/2} * \frac{1}{2} = 2 * 1 * \frac{1}{2} * 1 * \frac{1}{2} = \frac{1}{2}
b. Probability
Total number of students =
2

4. 3 English, 2 French, 5 Chinese, 4 Korean, 10 Khmer.

We choose 3 students. The number of ways to do this is C(24,3)=242322321=42322=2024C(24, 3) = \frac{24*23*22}{3*2*1} = 4*23*22 = 2024.
A: All 3 are from Europe.
Number of European students = 3 English + 2 French =

5. Number of ways to choose 3 = $C(5, 3) = \frac{5*4*3}{3*2*1} = 10$.

P(A)=102024=51012P(A) = \frac{10}{2024} = \frac{5}{1012}.
B: All 3 from Asia, not Khmer.
Number of Asian students (excluding Khmer) = 5 Chinese + 4 Korean =

9. Number of ways to choose 3 = $C(9, 3) = \frac{9*8*7}{3*2*1} = 3*4*7 = 84$.

P(B)=842024=21506P(B) = \frac{84}{2024} = \frac{21}{506}.
C: One Khmer, one European, one Asian (not Khmer)
Number of ways to choose 1 Khmer = C(10,1)=10C(10, 1) = 10.
Number of ways to choose 1 European = C(5,1)=5C(5, 1) = 5.
Number of ways to choose 1 Asian (not Khmer) = C(9,1)=9C(9, 1) = 9.
Number of ways to have this event = 1059=45010 * 5 * 9 = 450.
P(C)=4502024=2251012P(C) = \frac{450}{2024} = \frac{225}{1012}
c. Integrals

1. $I = \int_1^e (2x + 1 + \frac{lnx}{x})dx = \int_1^e 2x dx + \int_1^e dx + \int_1^e \frac{lnx}{x}dx = [x^2]_1^e + [x]_1^e + [\frac{(lnx)^2}{2}]_1^e$

I=(e21)+(e1)+((lne)22(ln1)22)=e21+e1+120=e2+e32I = (e^2 - 1) + (e-1) + (\frac{(lne)^2}{2} - \frac{(ln1)^2}{2}) = e^2 - 1 + e - 1 + \frac{1}{2} - 0 = e^2 + e - \frac{3}{2}

2. $J = \int \frac{6x^2 + 4x}{x^3 + x^2 - x - 1} dx$

Note that x3+x2x1=x2(x+1)(x+1)=(x21)(x+1)=(x1)(x+1)(x+1)=(x1)(x+1)2x^3+x^2-x-1 = x^2(x+1) - (x+1) = (x^2-1)(x+1) = (x-1)(x+1)(x+1) = (x-1)(x+1)^2
Let 6x2+4x(x1)(x+1)2=Ax1+Bx+1+C(x+1)2\frac{6x^2+4x}{(x-1)(x+1)^2} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{(x+1)^2}
6x2+4x=A(x+1)2+B(x1)(x+1)+C(x1)6x^2+4x = A(x+1)^2 + B(x-1)(x+1) + C(x-1)
6x2+4x=A(x2+2x+1)+B(x21)+C(x1)=(A+B)x2+(2A+C)x+(ABC)6x^2+4x = A(x^2+2x+1) + B(x^2-1) + C(x-1) = (A+B)x^2 + (2A+C)x + (A-B-C)
Then:
A+B=6A+B = 6
2A+C=42A+C = 4
ABC=0A-B-C = 0
From the first two equations B=6AB = 6-A and C=42AC=4-2A. Substituting into the last equation:
A(6A)(42A)=0A - (6-A) - (4-2A) = 0
A6+A4+2A=0A - 6 + A - 4 + 2A = 0
4A=104A = 10, so A=52A = \frac{5}{2}
B=652=72B = 6 - \frac{5}{2} = \frac{7}{2}
C=42(52)=1C = 4 - 2(\frac{5}{2}) = -1
J=(5/2x1+7/2x+11(x+1)2)dx=52lnx1+72lnx+1+1x+1+CJ = \int (\frac{5/2}{x-1} + \frac{7/2}{x+1} - \frac{1}{(x+1)^2})dx = \frac{5}{2}ln|x-1| + \frac{7}{2}ln|x+1| + \frac{1}{x+1} + C

3. $K = \int_0^1 (x^2+1)xdx = \int_0^1 (x^3+x) dx = [\frac{x^4}{4} + \frac{x^2}{2}]_0^1 = \frac{1}{4} + \frac{1}{2} = \frac{3}{4}$

4. $L = \int_0^{\frac{\pi}{4}} (2cos(2x) - cos(4x)) dx = [sin(2x) - \frac{sin(4x)}{4}]_0^{\frac{\pi}{4}} = sin(\frac{\pi}{2}) - \frac{sin(\pi)}{4} - (sin(0) - \frac{sin(0)}{4}) = 1 - 0 - 0 = 1$

3. Final Answer

Limits: 6+2e26 + 2e^2, 0, for any a, 1/2
Probabilities: 5/1012, 21/506, 225/1012
Integrals: e2+e32e^2 + e - \frac{3}{2}, 52lnx1+72lnx+1+1x+1+C\frac{5}{2}ln|x-1| + \frac{7}{2}ln|x+1| + \frac{1}{x+1} + C, 3/4, 1

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7