First, we simplify the expression by dividing each term in the numerator by x: f(x)=xx3−x2x2+xx−x3 f(x)=x2−2x+1−3x−1 Next, we differentiate each term with respect to x. Recall the power rule: dxd(xn)=nxn−1. dxd(x2)=2x2−1=2x dxd(−2x)=−2dxd(x)=−2(1)x1−1=−2(1)=−2 dxd(1)=0 dxd(−3x−1)=−3dxd(x−1)=−3(−1)x−1−1=3x−2=x23 Combining these results, we get:
f′(x)=2x−2+0+x23 f′(x)=2x−2+x23