We need to evaluate the definite integral $K = \int_0^1 (x^2 + 1)^7 x \, dx$.

AnalysisDefinite IntegralIntegration by SubstitutionPower Rule of Integration
2025/5/21

1. Problem Description

We need to evaluate the definite integral K=01(x2+1)7xdxK = \int_0^1 (x^2 + 1)^7 x \, dx.

2. Solution Steps

We can solve this integral using substitution.
Let u=x2+1u = x^2 + 1.
Then, dudx=2x\frac{du}{dx} = 2x, so du=2xdxdu = 2x \, dx.
Thus, xdx=12dux \, dx = \frac{1}{2} du.
When x=0x = 0, u=02+1=1u = 0^2 + 1 = 1.
When x=1x = 1, u=12+1=2u = 1^2 + 1 = 2.
Now we can rewrite the integral in terms of uu:
K=12u712du=1212u7duK = \int_1^2 u^7 \cdot \frac{1}{2} du = \frac{1}{2} \int_1^2 u^7 du.
We can evaluate the integral of u7u^7 using the power rule for integration:
undu=un+1n+1+C\int u^n du = \frac{u^{n+1}}{n+1} + C
So, u7du=u88+C\int u^7 du = \frac{u^8}{8} + C.
Therefore, K=12[u88]12=12(288188)=12(256818)=12(2558)=25516K = \frac{1}{2} \left[ \frac{u^8}{8} \right]_1^2 = \frac{1}{2} \left( \frac{2^8}{8} - \frac{1^8}{8} \right) = \frac{1}{2} \left( \frac{256}{8} - \frac{1}{8} \right) = \frac{1}{2} \left( \frac{255}{8} \right) = \frac{255}{16}.

3. Final Answer

K=25516K = \frac{255}{16}

Related problems in "Analysis"

The problem asks to evaluate the integral $\int 2^x dx$. The given solution is $\frac{2^{x+1}}{x+1} ...

IntegrationExponentialsDerivativesCalculus
2025/5/23

We are asked to evaluate the limit: $\lim_{x \to 4} \frac{x-4}{x^2-16}$.

LimitsCalculusAlgebraic ManipulationRational Functions
2025/5/22

The problem is to evaluate the following expression: $\frac{sin(\frac{2\pi}{3}) + cos(\frac{\pi}{4})...

TrigonometryTrigonometric FunctionsExpression EvaluationSimplificationRationalization
2025/5/22

We need to evaluate the double integral $\iint_S \frac{2}{1+x^2} dA$, where $S$ is the triangular re...

Double IntegralsIntegrationCalculusMultivariable CalculusarctanIntegration by Parts
2025/5/22

We need to evaluate the double integral $\int_{1}^{2} \int_{0}^{x^2} \frac{y^2}{x} \, dy \, dx$.

Double IntegralIntegration
2025/5/22

We are asked to evaluate the iterated integral $\int_{0}^{2} \int_{-x}^{x} e^{-x^2} dy dx$.

Iterated IntegralsCalculusIntegrationDefinite IntegralsSubstitution
2025/5/22

The problem asks to evaluate the limit $\lim_{x \to \infty} (\sqrt{x^2+x} - \sqrt{x^2-1})$.

LimitsCalculusRationalizationSquare Roots
2025/5/21

We are asked to find the limit of the function $\frac{e^x - e^{-x}}{2e^x}$ as $x$ approaches $0$. Th...

LimitsExponential FunctionsCalculus
2025/5/21

Given the function $y = x^3 - x$ with graph C. a. Show that A(-1, 0) is an intersection point betwee...

CalculusDerivativesTangent LinesIntersection of CurvesQuadratic EquationsVieta's Formulas
2025/5/20

The problem asks us to differentiate the function $f(x) = \frac{x^3 - 2x^2 + x - 3}{x}$ with respect...

DifferentiationCalculusPower RuleFunctions
2025/5/20