First, we need to find the values of each trigonometric function:
sin(32π)=sin(π−3π)=sin(3π)=23 cos(4π)=22 tan(6π)=31=33 cot(6π)=tan(6π)1=3 Now substitute these values into the expression:
33−323+22 Simplify the numerator:
23+22=23+2 Simplify the denominator:
33−3=33−333=33−33=3−23 Now we have:
3−2323+2=23+2⋅−233=−433(3+2) Rationalize the denominator:
−433(3+2)⋅33=−4(3)33(3+2)=−123(3+6)=−43+6=−43+6