The problem is to evaluate the following expression: $\frac{sin(\frac{2\pi}{3}) + cos(\frac{\pi}{4})}{tan(\frac{\pi}{6}) - cot(\frac{\pi}{6})}$

AnalysisTrigonometryTrigonometric FunctionsExpression EvaluationSimplificationRationalization
2025/5/22

1. Problem Description

The problem is to evaluate the following expression:
sin(2π3)+cos(π4)tan(π6)cot(π6)\frac{sin(\frac{2\pi}{3}) + cos(\frac{\pi}{4})}{tan(\frac{\pi}{6}) - cot(\frac{\pi}{6})}

2. Solution Steps

First, we need to find the values of each trigonometric function:
sin(2π3)=sin(ππ3)=sin(π3)=32sin(\frac{2\pi}{3}) = sin(\pi - \frac{\pi}{3}) = sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}
cos(π4)=22cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}
tan(π6)=13=33tan(\frac{\pi}{6}) = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}
cot(π6)=1tan(π6)=3cot(\frac{\pi}{6}) = \frac{1}{tan(\frac{\pi}{6})} = \sqrt{3}
Now substitute these values into the expression:
32+22333\frac{\frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{3} - \sqrt{3}}
Simplify the numerator:
32+22=3+22\frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} = \frac{\sqrt{3} + \sqrt{2}}{2}
Simplify the denominator:
333=33333=3333=233\frac{\sqrt{3}}{3} - \sqrt{3} = \frac{\sqrt{3}}{3} - \frac{3\sqrt{3}}{3} = \frac{\sqrt{3} - 3\sqrt{3}}{3} = \frac{-2\sqrt{3}}{3}
Now we have:
3+22233=3+22323=3(3+2)43\frac{\frac{\sqrt{3} + \sqrt{2}}{2}}{\frac{-2\sqrt{3}}{3}} = \frac{\sqrt{3} + \sqrt{2}}{2} \cdot \frac{3}{-2\sqrt{3}} = \frac{3(\sqrt{3} + \sqrt{2})}{-4\sqrt{3}}
Rationalize the denominator:
3(3+2)4333=33(3+2)4(3)=3(3+6)12=3+64=3+64\frac{3(\sqrt{3} + \sqrt{2})}{-4\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{3\sqrt{3}(\sqrt{3} + \sqrt{2})}{-4(3)} = \frac{3(3 + \sqrt{6})}{-12} = \frac{3 + \sqrt{6}}{-4} = -\frac{3 + \sqrt{6}}{4}

3. Final Answer

3+64-\frac{3 + \sqrt{6}}{4}

Related problems in "Analysis"

The problem asks to evaluate the integral $\int 2^x dx$. The given solution is $\frac{2^{x+1}}{x+1} ...

IntegrationExponentialsDerivativesCalculus
2025/5/23

We are asked to evaluate the limit: $\lim_{x \to 4} \frac{x-4}{x^2-16}$.

LimitsCalculusAlgebraic ManipulationRational Functions
2025/5/22

We need to evaluate the double integral $\iint_S \frac{2}{1+x^2} dA$, where $S$ is the triangular re...

Double IntegralsIntegrationCalculusMultivariable CalculusarctanIntegration by Parts
2025/5/22

We need to evaluate the double integral $\int_{1}^{2} \int_{0}^{x^2} \frac{y^2}{x} \, dy \, dx$.

Double IntegralIntegration
2025/5/22

We are asked to evaluate the iterated integral $\int_{0}^{2} \int_{-x}^{x} e^{-x^2} dy dx$.

Iterated IntegralsCalculusIntegrationDefinite IntegralsSubstitution
2025/5/22

The problem asks to evaluate the limit $\lim_{x \to \infty} (\sqrt{x^2+x} - \sqrt{x^2-1})$.

LimitsCalculusRationalizationSquare Roots
2025/5/21

We need to evaluate the definite integral $K = \int_0^1 (x^2 + 1)^7 x \, dx$.

Definite IntegralIntegration by SubstitutionPower Rule of Integration
2025/5/21

We are asked to find the limit of the function $\frac{e^x - e^{-x}}{2e^x}$ as $x$ approaches $0$. Th...

LimitsExponential FunctionsCalculus
2025/5/21

Given the function $y = x^3 - x$ with graph C. a. Show that A(-1, 0) is an intersection point betwee...

CalculusDerivativesTangent LinesIntersection of CurvesQuadratic EquationsVieta's Formulas
2025/5/20

The problem asks us to differentiate the function $f(x) = \frac{x^3 - 2x^2 + x - 3}{x}$ with respect...

DifferentiationCalculusPower RuleFunctions
2025/5/20