We need to evaluate the double integral $\int_{1}^{2} \int_{0}^{x^2} \frac{y^2}{x} \, dy \, dx$.

AnalysisDouble IntegralIntegration
2025/5/22

1. Problem Description

We need to evaluate the double integral 120x2y2xdydx\int_{1}^{2} \int_{0}^{x^2} \frac{y^2}{x} \, dy \, dx.

2. Solution Steps

First, we integrate with respect to yy:
0x2y2xdy=1x0x2y2dy\int_{0}^{x^2} \frac{y^2}{x} \, dy = \frac{1}{x} \int_{0}^{x^2} y^2 \, dy
=1x[y33]0x2=1x((x2)33033)=1x(x63)=x53= \frac{1}{x} \left[ \frac{y^3}{3} \right]_{0}^{x^2} = \frac{1}{x} \left( \frac{(x^2)^3}{3} - \frac{0^3}{3} \right) = \frac{1}{x} \left( \frac{x^6}{3} \right) = \frac{x^5}{3}.
Now, we integrate with respect to xx:
12x53dx=1312x5dx\int_{1}^{2} \frac{x^5}{3} \, dx = \frac{1}{3} \int_{1}^{2} x^5 \, dx
=13[x66]12=13(266166)=13(64616)= \frac{1}{3} \left[ \frac{x^6}{6} \right]_{1}^{2} = \frac{1}{3} \left( \frac{2^6}{6} - \frac{1^6}{6} \right) = \frac{1}{3} \left( \frac{64}{6} - \frac{1}{6} \right)
=13(636)=13(212)=216=72= \frac{1}{3} \left( \frac{63}{6} \right) = \frac{1}{3} \left( \frac{21}{2} \right) = \frac{21}{6} = \frac{7}{2}.

3. Final Answer

72\frac{7}{2}

Related problems in "Analysis"

The problem asks to evaluate the integral $\int 2^x dx$. The given solution is $\frac{2^{x+1}}{x+1} ...

IntegrationExponentialsDerivativesCalculus
2025/5/23

We are asked to evaluate the limit: $\lim_{x \to 4} \frac{x-4}{x^2-16}$.

LimitsCalculusAlgebraic ManipulationRational Functions
2025/5/22

The problem is to evaluate the following expression: $\frac{sin(\frac{2\pi}{3}) + cos(\frac{\pi}{4})...

TrigonometryTrigonometric FunctionsExpression EvaluationSimplificationRationalization
2025/5/22

We need to evaluate the double integral $\iint_S \frac{2}{1+x^2} dA$, where $S$ is the triangular re...

Double IntegralsIntegrationCalculusMultivariable CalculusarctanIntegration by Parts
2025/5/22

We are asked to evaluate the iterated integral $\int_{0}^{2} \int_{-x}^{x} e^{-x^2} dy dx$.

Iterated IntegralsCalculusIntegrationDefinite IntegralsSubstitution
2025/5/22

The problem asks to evaluate the limit $\lim_{x \to \infty} (\sqrt{x^2+x} - \sqrt{x^2-1})$.

LimitsCalculusRationalizationSquare Roots
2025/5/21

We need to evaluate the definite integral $K = \int_0^1 (x^2 + 1)^7 x \, dx$.

Definite IntegralIntegration by SubstitutionPower Rule of Integration
2025/5/21

We are asked to find the limit of the function $\frac{e^x - e^{-x}}{2e^x}$ as $x$ approaches $0$. Th...

LimitsExponential FunctionsCalculus
2025/5/21

Given the function $y = x^3 - x$ with graph C. a. Show that A(-1, 0) is an intersection point betwee...

CalculusDerivativesTangent LinesIntersection of CurvesQuadratic EquationsVieta's Formulas
2025/5/20

The problem asks us to differentiate the function $f(x) = \frac{x^3 - 2x^2 + x - 3}{x}$ with respect...

DifferentiationCalculusPower RuleFunctions
2025/5/20