We need to evaluate the double integral $\iint_S \frac{2}{1+x^2} dA$, where $S$ is the triangular region with vertices at $(0,0)$, $(2,2)$, and $(0,2)$.

AnalysisDouble IntegralsIntegrationCalculusMultivariable CalculusarctanIntegration by Parts
2025/5/22

1. Problem Description

We need to evaluate the double integral S21+x2dA\iint_S \frac{2}{1+x^2} dA, where SS is the triangular region with vertices at (0,0)(0,0), (2,2)(2,2), and (0,2)(0,2).

2. Solution Steps

First, we need to determine the bounds of integration. The region SS is a triangle.
The line connecting (0,0)(0,0) and (2,2)(2,2) is y=xy=x.
The line connecting (2,2)(2,2) and (0,2)(0,2) is y=2y=2.
The line connecting (0,0)(0,0) and (0,2)(0,2) is x=0x=0.
So, the region SS can be described as 0xy0 \le x \le y and 0y20 \le y \le 2.
Therefore, the integral can be written as
S21+x2dA=020y21+x2dxdy\iint_S \frac{2}{1+x^2} dA = \int_0^2 \int_0^y \frac{2}{1+x^2} dx dy.
Now, we evaluate the inner integral:
0y21+x2dx=2arctan(x)0y=2(arctan(y)arctan(0))=2arctan(y)\int_0^y \frac{2}{1+x^2} dx = 2 \arctan(x) \Big|_0^y = 2(\arctan(y) - \arctan(0)) = 2 \arctan(y).
Next, we evaluate the outer integral:
022arctan(y)dy\int_0^2 2 \arctan(y) dy.
To evaluate this integral, we use integration by parts. Let u=arctan(y)u = \arctan(y) and dv=dydv = dy. Then du=11+y2dydu = \frac{1}{1+y^2} dy and v=yv = y.
2arctan(y)dy=2(yarctan(y)y1+y2dy)\int 2 \arctan(y) dy = 2(y \arctan(y) - \int \frac{y}{1+y^2} dy).
Let w=1+y2w = 1+y^2. Then dw=2ydydw = 2y dy, so ydy=12dwy dy = \frac{1}{2} dw.
y1+y2dy=1w12dw=12lnw=12ln(1+y2)\int \frac{y}{1+y^2} dy = \int \frac{1}{w} \frac{1}{2} dw = \frac{1}{2} \ln|w| = \frac{1}{2} \ln(1+y^2).
Thus, 2arctan(y)dy=2yarctan(y)ln(1+y2)\int 2 \arctan(y) dy = 2y \arctan(y) - \ln(1+y^2).
Now, we evaluate the definite integral:
022arctan(y)dy=[2yarctan(y)ln(1+y2)]02=(4arctan(2)ln(5))(0ln(1))=4arctan(2)ln(5)\int_0^2 2 \arctan(y) dy = \Big[ 2y \arctan(y) - \ln(1+y^2) \Big]_0^2 = (4 \arctan(2) - \ln(5)) - (0 - \ln(1)) = 4 \arctan(2) - \ln(5).

3. Final Answer

4arctan(2)ln(5)4 \arctan(2) - \ln(5)

Related problems in "Analysis"

The problem asks to evaluate the integral $\int 2^x dx$. The given solution is $\frac{2^{x+1}}{x+1} ...

IntegrationExponentialsDerivativesCalculus
2025/5/23

We are asked to evaluate the limit: $\lim_{x \to 4} \frac{x-4}{x^2-16}$.

LimitsCalculusAlgebraic ManipulationRational Functions
2025/5/22

The problem is to evaluate the following expression: $\frac{sin(\frac{2\pi}{3}) + cos(\frac{\pi}{4})...

TrigonometryTrigonometric FunctionsExpression EvaluationSimplificationRationalization
2025/5/22

We need to evaluate the double integral $\int_{1}^{2} \int_{0}^{x^2} \frac{y^2}{x} \, dy \, dx$.

Double IntegralIntegration
2025/5/22

We are asked to evaluate the iterated integral $\int_{0}^{2} \int_{-x}^{x} e^{-x^2} dy dx$.

Iterated IntegralsCalculusIntegrationDefinite IntegralsSubstitution
2025/5/22

The problem asks to evaluate the limit $\lim_{x \to \infty} (\sqrt{x^2+x} - \sqrt{x^2-1})$.

LimitsCalculusRationalizationSquare Roots
2025/5/21

We need to evaluate the definite integral $K = \int_0^1 (x^2 + 1)^7 x \, dx$.

Definite IntegralIntegration by SubstitutionPower Rule of Integration
2025/5/21

We are asked to find the limit of the function $\frac{e^x - e^{-x}}{2e^x}$ as $x$ approaches $0$. Th...

LimitsExponential FunctionsCalculus
2025/5/21

Given the function $y = x^3 - x$ with graph C. a. Show that A(-1, 0) is an intersection point betwee...

CalculusDerivativesTangent LinesIntersection of CurvesQuadratic EquationsVieta's Formulas
2025/5/20

The problem asks us to differentiate the function $f(x) = \frac{x^3 - 2x^2 + x - 3}{x}$ with respect...

DifferentiationCalculusPower RuleFunctions
2025/5/20