The problem asks to calculate the area under the curve of the given functions between the specified $x$ values. I will solve part (a), (c), (e) and (f) of the problem using integration.

AnalysisCalculusIntegrationDefinite IntegralArea under a curve
2025/5/24

1. Problem Description

The problem asks to calculate the area under the curve of the given functions between the specified xx values. I will solve part (a), (c), (e) and (f) of the problem using integration.

2. Solution Steps

a) y=3x+2y = 3x + 2, x=1x = 1, x=3x = 3
The area under the curve is given by the definite integral:
Area=13(3x+2)dxArea = \int_{1}^{3} (3x + 2) dx
We integrate the function:
(3x+2)dx=32x2+2x+C\int (3x + 2) dx = \frac{3}{2}x^2 + 2x + C
Now, we evaluate the definite integral:
Area=[32(3)2+2(3)][32(1)2+2(1)]Area = [\frac{3}{2}(3)^2 + 2(3)] - [\frac{3}{2}(1)^2 + 2(1)]
Area=[32(9)+6][32+2]Area = [\frac{3}{2}(9) + 6] - [\frac{3}{2} + 2]
Area=[272+6][32+2]Area = [\frac{27}{2} + 6] - [\frac{3}{2} + 2]
Area=272+6322Area = \frac{27}{2} + 6 - \frac{3}{2} - 2
Area=242+4=12+4=16Area = \frac{24}{2} + 4 = 12 + 4 = 16
c) y=4x2y = 4 - x^2, x=0x = 0, x=2x = 2
The area under the curve is given by the definite integral:
Area=02(4x2)dxArea = \int_{0}^{2} (4 - x^2) dx
We integrate the function:
(4x2)dx=4x13x3+C\int (4 - x^2) dx = 4x - \frac{1}{3}x^3 + C
Now, we evaluate the definite integral:
Area=[4(2)13(2)3][4(0)13(0)3]Area = [4(2) - \frac{1}{3}(2)^3] - [4(0) - \frac{1}{3}(0)^3]
Area=[883][0]Area = [8 - \frac{8}{3}] - [0]
Area=883=2483=163Area = 8 - \frac{8}{3} = \frac{24 - 8}{3} = \frac{16}{3}
e) y=x3y = x^3, x=0x = 0, x=3x = 3
The area under the curve is given by the definite integral:
Area=03x3dxArea = \int_{0}^{3} x^3 dx
We integrate the function:
x3dx=14x4+C\int x^3 dx = \frac{1}{4}x^4 + C
Now, we evaluate the definite integral:
Area=[14(3)4][14(0)4]Area = [\frac{1}{4}(3)^4] - [\frac{1}{4}(0)^4]
Area=14(81)0Area = \frac{1}{4}(81) - 0
Area=814Area = \frac{81}{4}
f) y=x3xy = x^3 - x, x=1x = -1, x=0x = 0
The area under the curve is given by the definite integral:
Area=10(x3x)dxArea = \int_{-1}^{0} (x^3 - x) dx
We integrate the function:
(x3x)dx=14x412x2+C\int (x^3 - x) dx = \frac{1}{4}x^4 - \frac{1}{2}x^2 + C
Now, we evaluate the definite integral:
Area=[14(0)412(0)2][14(1)412(1)2]Area = [\frac{1}{4}(0)^4 - \frac{1}{2}(0)^2] - [\frac{1}{4}(-1)^4 - \frac{1}{2}(-1)^2]
Area=[00][1412]Area = [0 - 0] - [\frac{1}{4} - \frac{1}{2}]
Area=0[1424]Area = 0 - [\frac{1}{4} - \frac{2}{4}]
Area=[14]=14Area = -[-\frac{1}{4}] = \frac{1}{4}

3. Final Answer

a) The area under the curve y=3x+2y = 3x + 2 from x=1x = 1 to x=3x = 3 is 1616.
c) The area under the curve y=4x2y = 4 - x^2 from x=0x = 0 to x=2x = 2 is 163\frac{16}{3}.
e) The area under the curve y=x3y = x^3 from x=0x = 0 to x=3x = 3 is 814\frac{81}{4}.
f) The area under the curve y=x3xy = x^3 - x from x=1x = -1 to x=0x = 0 is 14\frac{1}{4}.

Related problems in "Analysis"

We need to find the mass $m$ and center of mass $(\bar{x}, \bar{y})$ of the lamina bounded by the cu...

CalculusDouble IntegralsCenter of MassIntegration by PartsLamina
2025/5/25

The problem asks us to find the mass $m$ and the center of mass $(\bar{x}, \bar{y})$ of the lamina b...

Multiple IntegralsCenter of MassDouble IntegralsDensity FunctionLamina
2025/5/25

The problem asks to find the mass $m$ and the center of mass $(\bar{x}, \bar{y})$ of a lamina bounde...

Multivariable CalculusDouble IntegralsCenter of MassLaminaDensity Function
2025/5/25

The problem asks us to find the value(s) of $a$ such that the function $f(x) = x^3 + ax^2 + 3x - 4$ ...

CalculusDerivativesIncreasing FunctionQuadratic InequalitiesDiscriminant
2025/5/25

The problem is to evaluate the double integral $\int_0^{\pi/2} [\frac{1}{2} \int_4^0 \sqrt{u} \, du ...

CalculusIntegrationDouble IntegralDefinite Integral
2025/5/25

We need to evaluate the double integral $\iint_S y \, dA$, where $S$ is the region in the first quad...

Double IntegralsPolar CoordinatesMultivariable Calculus
2025/5/25

We need to evaluate the double integral $\iint_S \sqrt{4-x^2-y^2} \, dA$, where $S$ is the first qua...

Multiple IntegralsDouble IntegralsPolar CoordinatesIntegrationCalculus
2025/5/25

The problem asks to reverse the order of integration of the iterated integral $\int_0^1 \int_{-y}^y ...

Iterated IntegralsChange of Order of IntegrationCalculus of Several Variables
2025/5/25

We are given the iterated integral $\int_{0}^{1} \int_{x^2}^{x^{1/4}} f(x, y) dy dx$. We need to cha...

Iterated IntegralsChange of Integration OrderCalculus
2025/5/25

We are given the iterated integral $\int_{-\pi/2}^{\pi/2} \int_{0}^{\theta} kr dr d\theta$. The goal...

Iterated IntegralsDouble IntegralsCenter of MassPolar CoordinatesCalculus
2025/5/25