a) y=3x+2, x=1, x=3 The area under the curve is given by the definite integral:
Area=∫13(3x+2)dx We integrate the function:
∫(3x+2)dx=23x2+2x+C Now, we evaluate the definite integral:
Area=[23(3)2+2(3)]−[23(1)2+2(1)] Area=[23(9)+6]−[23+2] Area=[227+6]−[23+2] Area=227+6−23−2 Area=224+4=12+4=16 c) y=4−x2, x=0, x=2 The area under the curve is given by the definite integral:
Area=∫02(4−x2)dx We integrate the function:
∫(4−x2)dx=4x−31x3+C Now, we evaluate the definite integral:
Area=[4(2)−31(2)3]−[4(0)−31(0)3] Area=[8−38]−[0] Area=8−38=324−8=316 e) y=x3, x=0, x=3 The area under the curve is given by the definite integral:
Area=∫03x3dx We integrate the function:
∫x3dx=41x4+C Now, we evaluate the definite integral:
Area=[41(3)4]−[41(0)4] Area=41(81)−0 Area=481 f) y=x3−x, x=−1, x=0 The area under the curve is given by the definite integral:
Area=∫−10(x3−x)dx We integrate the function:
∫(x3−x)dx=41x4−21x2+C Now, we evaluate the definite integral:
Area=[41(0)4−21(0)2]−[41(−1)4−21(−1)2] Area=[0−0]−[41−21] Area=0−[41−42] Area=−[−41]=41