We need to solve the inequality $\frac{3}{x} + \frac{x}{3} > \frac{3(x+3)^2 - x(9+2x^2)}{3x^2+9x}$.

AlgebraInequalitiesAlgebraic ManipulationRational Expressions
2025/5/25

1. Problem Description

We need to solve the inequality 3x+x3>3(x+3)2x(9+2x2)3x2+9x\frac{3}{x} + \frac{x}{3} > \frac{3(x+3)^2 - x(9+2x^2)}{3x^2+9x}.

2. Solution Steps

First, we simplify the right-hand side of the inequality.
The numerator is 3(x+3)2x(9+2x2)=3(x2+6x+9)9x2x3=3x2+18x+279x2x3=2x3+3x2+9x+273(x+3)^2 - x(9+2x^2) = 3(x^2+6x+9) - 9x - 2x^3 = 3x^2 + 18x + 27 - 9x - 2x^3 = -2x^3 + 3x^2 + 9x + 27.
The denominator is 3x2+9x=3x(x+3)3x^2+9x = 3x(x+3).
So the right-hand side is 2x3+3x2+9x+273x(x+3)\frac{-2x^3+3x^2+9x+27}{3x(x+3)}.
Now, we rewrite the inequality as
3x+x3>2x3+3x2+9x+273x(x+3)\frac{3}{x} + \frac{x}{3} > \frac{-2x^3+3x^2+9x+27}{3x(x+3)}.
The left-hand side is 9+x23x\frac{9+x^2}{3x}. Thus, we have
9+x23x>2x3+3x2+9x+273x(x+3)\frac{9+x^2}{3x} > \frac{-2x^3+3x^2+9x+27}{3x(x+3)}.
Multiplying both sides by 3x(x+3)3x(x+3) gives
(9+x2)(x+3)>2x3+3x2+9x+27(9+x^2)(x+3) > -2x^3+3x^2+9x+27 if x(x+3)>0x(x+3)>0, i.e., x<3x<-3 or x>0x>0.
(9+x2)(x+3)<2x3+3x2+9x+27(9+x^2)(x+3) < -2x^3+3x^2+9x+27 if x(x+3)<0x(x+3)<0, i.e., 3<x<0-3<x<0.
Expanding the left side gives
9x+27+x3+3x2>2x3+3x2+9x+279x + 27 + x^3 + 3x^2 > -2x^3+3x^2+9x+27.
So x3+9x+27+3x2>2x3+3x2+9x+27x^3 + 9x + 27 + 3x^2 > -2x^3+3x^2+9x+27.
Then x3>2x3x^3 > -2x^3, which implies 3x3>03x^3 > 0, so x3>0x^3 > 0, and thus x>0x>0.
If x<3x<-3 or x>0x>0, then (9+x2)(x+3)>2x3+3x2+9x+27(9+x^2)(x+3) > -2x^3+3x^2+9x+27 becomes x>0x>0.
Since x>0x>0 is contained in x<3x<-3 or x>0x>0, x>0x>0 is part of the solution.
If 3<x<0-3<x<0, then (9+x2)(x+3)<2x3+3x2+9x+27(9+x^2)(x+3) < -2x^3+3x^2+9x+27 becomes x>0x>0.
However, this contradicts 3<x<0-3<x<0, so there is no solution in this case.
Therefore, the solution is x>0x>0.
Also, xx cannot be 3-3 or 00.

3. Final Answer

x>0x>0