We are asked to simplify the expression $y = \frac{|x+1| - |x-1|}{2}$.

AlgebraAbsolute ValuePiecewise FunctionSimplificationCasework
2025/5/25

1. Problem Description

We are asked to simplify the expression y=x+1x12y = \frac{|x+1| - |x-1|}{2}.

2. Solution Steps

We need to consider different cases based on the values of xx.
Case 1: x<1x < -1
In this case, x+1<0x+1 < 0 and x1<0x-1 < 0, so x+1=(x+1)|x+1| = -(x+1) and x1=(x1)|x-1| = -(x-1).
Therefore,
y=(x+1)((x1))2=x1+x12=22=1y = \frac{-(x+1) - (-(x-1))}{2} = \frac{-x-1 + x - 1}{2} = \frac{-2}{2} = -1.
Case 2: 1x<1-1 \le x < 1
In this case, x+10x+1 \ge 0 and x1<0x-1 < 0, so x+1=x+1|x+1| = x+1 and x1=(x1)|x-1| = -(x-1).
Therefore,
y=(x+1)((x1))2=x+1+x12=2x2=xy = \frac{(x+1) - (-(x-1))}{2} = \frac{x+1 + x - 1}{2} = \frac{2x}{2} = x.
Case 3: x1x \ge 1
In this case, x+1>0x+1 > 0 and x10x-1 \ge 0, so x+1=x+1|x+1| = x+1 and x1=x1|x-1| = x-1.
Therefore,
y=(x+1)(x1)2=x+1x+12=22=1y = \frac{(x+1) - (x-1)}{2} = \frac{x+1 - x + 1}{2} = \frac{2}{2} = 1.
In summary:
y=1y = -1 if x<1x < -1
y=xy = x if 1x<1-1 \le x < 1
y=1y = 1 if x1x \ge 1
We can rewrite the solution as:
y={1,x<1x,1x<11,x1y = \begin{cases} -1, & x < -1 \\ x, & -1 \le x < 1 \\ 1, & x \ge 1 \end{cases}

3. Final Answer

y={1,x<1x,1x<11,x1y = \begin{cases} -1, & x < -1 \\ x, & -1 \le x < 1 \\ 1, & x \ge 1 \end{cases}