The problem asks us to evaluate several definite integrals. Here, we will solve the first 4 problems, labeled a, b, c, and d. a) $\int_{0}^{1} x^2 \, dx$ b) $\int_{-1}^{3} x^3 \, dx$ c) $\int_{-1}^{1} t^5 \, dt$ d) $\int_{0}^{1} x^{2/3} \, dx$

AnalysisDefinite IntegralsPower RuleIntegrationAntiderivatives
2025/5/26

1. Problem Description

The problem asks us to evaluate several definite integrals. Here, we will solve the first 4 problems, labeled a, b, c, and d.
a) 01x2dx\int_{0}^{1} x^2 \, dx
b) 13x3dx\int_{-1}^{3} x^3 \, dx
c) 11t5dt\int_{-1}^{1} t^5 \, dt
d) 01x2/3dx\int_{0}^{1} x^{2/3} \, dx

2. Solution Steps

a) 01x2dx\int_{0}^{1} x^2 \, dx
We first find the antiderivative of x2x^2. Using the power rule for integration, we have:
x2dx=x2+12+1+C=x33+C\int x^2 \, dx = \frac{x^{2+1}}{2+1} + C = \frac{x^3}{3} + C.
Now, we evaluate the definite integral:
01x2dx=[x33]01=133033=130=13\int_{0}^{1} x^2 \, dx = \left[ \frac{x^3}{3} \right]_0^1 = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3} - 0 = \frac{1}{3}.
b) 13x3dx\int_{-1}^{3} x^3 \, dx
We first find the antiderivative of x3x^3. Using the power rule for integration, we have:
x3dx=x3+13+1+C=x44+C\int x^3 \, dx = \frac{x^{3+1}}{3+1} + C = \frac{x^4}{4} + C.
Now, we evaluate the definite integral:
13x3dx=[x44]13=344(1)44=81414=804=20\int_{-1}^{3} x^3 \, dx = \left[ \frac{x^4}{4} \right]_{-1}^3 = \frac{3^4}{4} - \frac{(-1)^4}{4} = \frac{81}{4} - \frac{1}{4} = \frac{80}{4} = 20.
c) 11t5dt\int_{-1}^{1} t^5 \, dt
We first find the antiderivative of t5t^5. Using the power rule for integration, we have:
t5dt=t5+15+1+C=t66+C\int t^5 \, dt = \frac{t^{5+1}}{5+1} + C = \frac{t^6}{6} + C.
Now, we evaluate the definite integral:
11t5dt=[t66]11=166(1)66=1616=0\int_{-1}^{1} t^5 \, dt = \left[ \frac{t^6}{6} \right]_{-1}^1 = \frac{1^6}{6} - \frac{(-1)^6}{6} = \frac{1}{6} - \frac{1}{6} = 0.
Alternatively, since t5t^5 is an odd function and the limits of integration are symmetric around 0, the integral is
0.
d) 01x2/3dx\int_{0}^{1} x^{2/3} \, dx
We first find the antiderivative of x2/3x^{2/3}. Using the power rule for integration, we have:
x2/3dx=x(2/3)+1(2/3)+1+C=x5/35/3+C=35x5/3+C\int x^{2/3} \, dx = \frac{x^{(2/3)+1}}{(2/3)+1} + C = \frac{x^{5/3}}{5/3} + C = \frac{3}{5} x^{5/3} + C.
Now, we evaluate the definite integral:
01x2/3dx=[35x5/3]01=35(1)5/335(0)5/3=35(1)35(0)=350=35\int_{0}^{1} x^{2/3} \, dx = \left[ \frac{3}{5} x^{5/3} \right]_0^1 = \frac{3}{5} (1)^{5/3} - \frac{3}{5} (0)^{5/3} = \frac{3}{5} (1) - \frac{3}{5} (0) = \frac{3}{5} - 0 = \frac{3}{5}.

3. Final Answer

a) 13\frac{1}{3}
b) 2020
c) 00
d) 35\frac{3}{5}

Related problems in "Analysis"

The problem requires us to find the first five terms of the given sequences $\{a_n\}$, determine if ...

SequencesLimitsConvergenceDivergence
2025/5/27

We need to find the limit of the expression $\frac{x \sin(3x)}{\sin^2(5x)}$ as $x$ approaches 0. Th...

LimitsTrigonometric FunctionsL'Hopital's Rule
2025/5/27

The problem asks to evaluate the limit: $A = \lim_{x\to 0} \frac{\ln(1+x)}{\sin x}$.

LimitsL'Hopital's RuleTrigonometric FunctionsLogarithmic Functions
2025/5/27

The problem asks to evaluate the definite integral $\int_{0}^{1} x\sqrt{x^2+1} dx$.

Definite Integralu-substitutionIntegration TechniquesCalculus
2025/5/26

We need to evaluate the definite integral: $\int_{-3}^{1} (-x^3 - x^2 + 3x + 4) \, dx$

Definite IntegralIntegrationAntiderivativePower Rule
2025/5/26

We are given that $F(x) = \int_{\sqrt{5}}^{arcsin(cosx)} f(sint) dt = \sqrt{\frac{1-sinx}{1+sinx}}$ ...

CalculusIntegrationDifferentiationFundamental Theorem of CalculusDefinite Integrals
2025/5/25

We are given the following information: $F(x) = \int_{\sqrt{2}}^{\arcsin(\cos x)} f(\sin t) dt = \sq...

CalculusDefinite IntegralsFunctionsEvaluation of Integrals
2025/5/25

We need to find the mass $m$ and center of mass $(\bar{x}, \bar{y})$ of the lamina bounded by the cu...

CalculusDouble IntegralsCenter of MassIntegration by PartsLamina
2025/5/25

The problem asks us to find the mass $m$ and the center of mass $(\bar{x}, \bar{y})$ of the lamina b...

Multiple IntegralsCenter of MassDouble IntegralsDensity FunctionLamina
2025/5/25

The problem asks to find the mass $m$ and the center of mass $(\bar{x}, \bar{y})$ of a lamina bounde...

Multivariable CalculusDouble IntegralsCenter of MassLaminaDensity Function
2025/5/25