First, we find the antiderivative of the integrand:
∫(−x3−x2+3x+4)dx=−∫x3dx−∫x2dx+3∫xdx+4∫1dx Recall the power rule for integration:
∫xndx=n+1xn+1+C Applying the power rule, we get:
−4x4−3x3+23x2+4x+C Now we evaluate the definite integral:
∫−31(−x3−x2+3x+4)dx=[−4x4−3x3+23x2+4x]−31 =(−414−313+23(1)2+4(1))−(−4(−3)4−3(−3)3+23(−3)2+4(−3)) =(−41−31+23+4)−(−481−3−27+23(9)−12) =(−41−31+23+4)−(−481+9+227−12) =(−41−31+23+4)−(−481+227−3) =−41−31+23+4+481−227+3 =(−41+481)−31+(23−227)+(4+3) =480−31−224+7 =20−31−12+7 =15−31 =345−31=344