We need to evaluate the definite integral: $\int_{-3}^{1} (-x^3 - x^2 + 3x + 4) \, dx$

AnalysisDefinite IntegralIntegrationAntiderivativePower Rule
2025/5/26

1. Problem Description

We need to evaluate the definite integral:
31(x3x2+3x+4)dx\int_{-3}^{1} (-x^3 - x^2 + 3x + 4) \, dx

2. Solution Steps

First, we find the antiderivative of the integrand:
(x3x2+3x+4)dx=x3dxx2dx+3xdx+41dx\int (-x^3 - x^2 + 3x + 4) \, dx = -\int x^3 \, dx - \int x^2 \, dx + 3\int x \, dx + 4\int 1 \, dx
Recall the power rule for integration:
xndx=xn+1n+1+C\int x^n \, dx = \frac{x^{n+1}}{n+1} + C
Applying the power rule, we get:
x44x33+3x22+4x+C-\frac{x^4}{4} - \frac{x^3}{3} + \frac{3x^2}{2} + 4x + C
Now we evaluate the definite integral:
31(x3x2+3x+4)dx=[x44x33+3x22+4x]31\int_{-3}^{1} (-x^3 - x^2 + 3x + 4) \, dx = \left[-\frac{x^4}{4} - \frac{x^3}{3} + \frac{3x^2}{2} + 4x\right]_{-3}^{1}
=(144133+3(1)22+4(1))((3)44(3)33+3(3)22+4(3))= \left(-\frac{1^4}{4} - \frac{1^3}{3} + \frac{3(1)^2}{2} + 4(1)\right) - \left(-\frac{(-3)^4}{4} - \frac{(-3)^3}{3} + \frac{3(-3)^2}{2} + 4(-3)\right)
=(1413+32+4)(814273+3(9)212)= \left(-\frac{1}{4} - \frac{1}{3} + \frac{3}{2} + 4\right) - \left(-\frac{81}{4} - \frac{-27}{3} + \frac{3(9)}{2} - 12\right)
=(1413+32+4)(814+9+27212)= \left(-\frac{1}{4} - \frac{1}{3} + \frac{3}{2} + 4\right) - \left(-\frac{81}{4} + 9 + \frac{27}{2} - 12\right)
=(1413+32+4)(814+2723)= \left(-\frac{1}{4} - \frac{1}{3} + \frac{3}{2} + 4\right) - \left(-\frac{81}{4} + \frac{27}{2} - 3\right)
=1413+32+4+814272+3= -\frac{1}{4} - \frac{1}{3} + \frac{3}{2} + 4 + \frac{81}{4} - \frac{27}{2} + 3
=(14+814)13+(32272)+(4+3)= \left(-\frac{1}{4} + \frac{81}{4}\right) - \frac{1}{3} + \left(\frac{3}{2} - \frac{27}{2}\right) + (4+3)
=80413242+7= \frac{80}{4} - \frac{1}{3} - \frac{24}{2} + 7
=201312+7= 20 - \frac{1}{3} - 12 + 7
=1513= 15 - \frac{1}{3}
=45313=443= \frac{45}{3} - \frac{1}{3} = \frac{44}{3}

3. Final Answer

443\frac{44}{3}

Related problems in "Analysis"

The problem asks to evaluate the definite integral $\int_{0}^{1} x\sqrt{x^2+1} dx$.

Definite Integralu-substitutionIntegration TechniquesCalculus
2025/5/26

The problem asks us to evaluate several definite integrals. Here, we will solve the first 4 problems...

Definite IntegralsPower RuleIntegrationAntiderivatives
2025/5/26

We are given that $F(x) = \int_{\sqrt{5}}^{arcsin(cosx)} f(sint) dt = \sqrt{\frac{1-sinx}{1+sinx}}$ ...

CalculusIntegrationDifferentiationFundamental Theorem of CalculusDefinite Integrals
2025/5/25

We are given the following information: $F(x) = \int_{\sqrt{2}}^{\arcsin(\cos x)} f(\sin t) dt = \sq...

CalculusDefinite IntegralsFunctionsEvaluation of Integrals
2025/5/25

We need to find the mass $m$ and center of mass $(\bar{x}, \bar{y})$ of the lamina bounded by the cu...

CalculusDouble IntegralsCenter of MassIntegration by PartsLamina
2025/5/25

The problem asks us to find the mass $m$ and the center of mass $(\bar{x}, \bar{y})$ of the lamina b...

Multiple IntegralsCenter of MassDouble IntegralsDensity FunctionLamina
2025/5/25

The problem asks to find the mass $m$ and the center of mass $(\bar{x}, \bar{y})$ of a lamina bounde...

Multivariable CalculusDouble IntegralsCenter of MassLaminaDensity Function
2025/5/25

The problem asks us to find the value(s) of $a$ such that the function $f(x) = x^3 + ax^2 + 3x - 4$ ...

CalculusDerivativesIncreasing FunctionQuadratic InequalitiesDiscriminant
2025/5/25

The problem is to evaluate the double integral $\int_0^{\pi/2} [\frac{1}{2} \int_4^0 \sqrt{u} \, du ...

CalculusIntegrationDouble IntegralDefinite Integral
2025/5/25

We need to evaluate the double integral $\iint_S y \, dA$, where $S$ is the region in the first quad...

Double IntegralsPolar CoordinatesMultivariable Calculus
2025/5/25