To evaluate the integral, we can use u-substitution.
Let u=x2+1. Then, dxdu=2x, so du=2xdx. Therefore, xdx=21du. Also, when x=0, u=02+1=1. When x=1, u=12+1=2. Thus, the integral becomes:
∫01xx2+1dx=∫12u⋅21du=21∫12u21du Now, we can find the antiderivative of u21: ∫u21du=23u23+C=32u23+C So, the integral becomes:
21∫12u21du=21[32u23]12=31[u23]12 Evaluating the definite integral:
31(223−123)=31(22−1)