The problem asks to evaluate the definite integral $\int_{0}^{1} x\sqrt{x^2+1} dx$.

AnalysisDefinite Integralu-substitutionIntegration TechniquesCalculus
2025/5/26

1. Problem Description

The problem asks to evaluate the definite integral 01xx2+1dx\int_{0}^{1} x\sqrt{x^2+1} dx.

2. Solution Steps

To evaluate the integral, we can use u-substitution.
Let u=x2+1u = x^2 + 1. Then, dudx=2x\frac{du}{dx} = 2x, so du=2xdxdu = 2x \, dx.
Therefore, xdx=12dux \, dx = \frac{1}{2} du.
Also, when x=0x = 0, u=02+1=1u = 0^2 + 1 = 1.
When x=1x = 1, u=12+1=2u = 1^2 + 1 = 2.
Thus, the integral becomes:
01xx2+1dx=12u12du=1212u12du\int_{0}^{1} x\sqrt{x^2+1} \, dx = \int_{1}^{2} \sqrt{u} \cdot \frac{1}{2} \, du = \frac{1}{2} \int_{1}^{2} u^{\frac{1}{2}} \, du
Now, we can find the antiderivative of u12u^{\frac{1}{2}}:
u12du=u3232+C=23u32+C\int u^{\frac{1}{2}} \, du = \frac{u^{\frac{3}{2}}}{\frac{3}{2}} + C = \frac{2}{3} u^{\frac{3}{2}} + C
So, the integral becomes:
1212u12du=12[23u32]12=13[u32]12\frac{1}{2} \int_{1}^{2} u^{\frac{1}{2}} \, du = \frac{1}{2} \left[ \frac{2}{3} u^{\frac{3}{2}} \right]_{1}^{2} = \frac{1}{3} \left[ u^{\frac{3}{2}} \right]_{1}^{2}
Evaluating the definite integral:
13(232132)=13(221)\frac{1}{3} \left( 2^{\frac{3}{2}} - 1^{\frac{3}{2}} \right) = \frac{1}{3} (2\sqrt{2} - 1)

3. Final Answer

2213\frac{2\sqrt{2}-1}{3}

Related problems in "Analysis"

The problem asks us to analyze several sequences given by their explicit formulas. For each sequence...

SequencesLimitsConvergenceDivergenceL'Hopital's Rule
2025/5/27

The problem requires us to find the first five terms of the given sequences $\{a_n\}$, determine if ...

SequencesLimitsConvergenceDivergence
2025/5/27

We need to find the limit of the expression $\frac{x \sin(3x)}{\sin^2(5x)}$ as $x$ approaches 0. Th...

LimitsTrigonometric FunctionsL'Hopital's Rule
2025/5/27

The problem asks to evaluate the limit: $A = \lim_{x\to 0} \frac{\ln(1+x)}{\sin x}$.

LimitsL'Hopital's RuleTrigonometric FunctionsLogarithmic Functions
2025/5/27

The problem asks us to evaluate several definite integrals. Here, we will solve the first 4 problems...

Definite IntegralsPower RuleIntegrationAntiderivatives
2025/5/26

We need to evaluate the definite integral: $\int_{-3}^{1} (-x^3 - x^2 + 3x + 4) \, dx$

Definite IntegralIntegrationAntiderivativePower Rule
2025/5/26

We are given that $F(x) = \int_{\sqrt{5}}^{arcsin(cosx)} f(sint) dt = \sqrt{\frac{1-sinx}{1+sinx}}$ ...

CalculusIntegrationDifferentiationFundamental Theorem of CalculusDefinite Integrals
2025/5/25

We are given the following information: $F(x) = \int_{\sqrt{2}}^{\arcsin(\cos x)} f(\sin t) dt = \sq...

CalculusDefinite IntegralsFunctionsEvaluation of Integrals
2025/5/25

We need to find the mass $m$ and center of mass $(\bar{x}, \bar{y})$ of the lamina bounded by the cu...

CalculusDouble IntegralsCenter of MassIntegration by PartsLamina
2025/5/25

The problem asks us to find the mass $m$ and the center of mass $(\bar{x}, \bar{y})$ of the lamina b...

Multiple IntegralsCenter of MassDouble IntegralsDensity FunctionLamina
2025/5/25