We can rewrite the expression as:
A=limx→0sin2(5x)x⋅sin(3x) We know that limx→0xsin(x)=1, which also implies limx→0sin(x)x=1. Then, limx→0axsin(ax)=1 implies limx→0sin(ax)ax=1. We can rewrite the given limit as:
A=limx→0sin2(5x)xsin(3x)=limx→0sin(5x)x⋅sin(5x)sin(3x) A=limx→0sin(5x)x⋅limx→0sin(5x)sin(3x) Let's evaluate the first limit:
limx→0sin(5x)x=limx→05sin(5x)5x=51limx→0sin(5x)5x=51⋅1=51 Now, let's evaluate the second limit:
limx→0sin(5x)sin(3x)=limx→03xsin(3x)⋅sin(5x)5x⋅5x3x=limx→03xsin(3x)⋅limx→0sin(5x)5x⋅limx→05x3x=1⋅1⋅53=53 Therefore,
A=51⋅53=253