We need to find the limit of the expression $\frac{x \sin(3x)}{\sin^2(5x)}$ as $x$ approaches 0. That is, we need to evaluate $A = \lim_{x \to 0} \frac{x \sin(3x)}{\sin^2(5x)}$.

AnalysisLimitsTrigonometric FunctionsL'Hopital's Rule
2025/5/27

1. Problem Description

We need to find the limit of the expression xsin(3x)sin2(5x)\frac{x \sin(3x)}{\sin^2(5x)} as xx approaches

0. That is, we need to evaluate $A = \lim_{x \to 0} \frac{x \sin(3x)}{\sin^2(5x)}$.

2. Solution Steps

We can rewrite the expression as:
A=limx0xsin2(5x)sin(3x)A = \lim_{x \to 0} \frac{x}{\sin^2(5x)} \cdot \sin(3x)
We know that limx0sin(x)x=1\lim_{x \to 0} \frac{\sin(x)}{x} = 1, which also implies limx0xsin(x)=1\lim_{x \to 0} \frac{x}{\sin(x)} = 1.
Then, limx0sin(ax)ax=1\lim_{x \to 0} \frac{\sin(ax)}{ax} = 1 implies limx0axsin(ax)=1\lim_{x \to 0} \frac{ax}{\sin(ax)} = 1.
We can rewrite the given limit as:
A=limx0xsin(3x)sin2(5x)=limx0xsin(5x)sin(3x)sin(5x)A = \lim_{x \to 0} \frac{x \sin(3x)}{\sin^2(5x)} = \lim_{x \to 0} \frac{x}{\sin(5x)} \cdot \frac{\sin(3x)}{\sin(5x)}
A=limx0xsin(5x)limx0sin(3x)sin(5x)A = \lim_{x \to 0} \frac{x}{\sin(5x)} \cdot \lim_{x \to 0} \frac{\sin(3x)}{\sin(5x)}
Let's evaluate the first limit:
limx0xsin(5x)=limx05x5sin(5x)=15limx05xsin(5x)=151=15\lim_{x \to 0} \frac{x}{\sin(5x)} = \lim_{x \to 0} \frac{5x}{5\sin(5x)} = \frac{1}{5} \lim_{x \to 0} \frac{5x}{\sin(5x)} = \frac{1}{5} \cdot 1 = \frac{1}{5}
Now, let's evaluate the second limit:
limx0sin(3x)sin(5x)=limx0sin(3x)3x5xsin(5x)3x5x=limx0sin(3x)3xlimx05xsin(5x)limx03x5x=1135=35\lim_{x \to 0} \frac{\sin(3x)}{\sin(5x)} = \lim_{x \to 0} \frac{\sin(3x)}{3x} \cdot \frac{5x}{\sin(5x)} \cdot \frac{3x}{5x} = \lim_{x \to 0} \frac{\sin(3x)}{3x} \cdot \lim_{x \to 0} \frac{5x}{\sin(5x)} \cdot \lim_{x \to 0} \frac{3x}{5x} = 1 \cdot 1 \cdot \frac{3}{5} = \frac{3}{5}
Therefore,
A=1535=325A = \frac{1}{5} \cdot \frac{3}{5} = \frac{3}{25}

3. Final Answer

3/25

Related problems in "Analysis"

The problem asks to determine the convergence or divergence of four series using the Limit Compariso...

SeriesConvergenceDivergenceLimit Comparison Test
2025/5/27

We are asked to evaluate the limit $$ \lim_{x\to 0} \frac{(1 - \cos x)^2}{\tan^3 x - \sin^3 x} $$

LimitsTrigonometryL'Hopital's RuleCalculus
2025/5/27

We are asked to evaluate the limit: $\lim_{x \to +\infty} x^2 (1 - \cos(\frac{1}{x}))$

LimitsTrigonometryCalculusL'Hopital's Rule (Implicitly)Series Expansion (Implicitly)
2025/5/27

We need to find the limit of the given expression as $x$ approaches 0: $$ \lim_{x \to 0} \frac{\sqrt...

LimitsTrigonometryL'Hôpital's Rule (Implicitly)Rationalization
2025/5/27

We are asked to evaluate the limit: $\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1+\cos x}}{\sin^2 x}$

LimitsTrigonometryL'Hôpital's Rule (Implicit)RationalizationCalculus
2025/5/27

The problem asks to determine whether the given series converges or diverges. If a series converges,...

SeriesConvergenceDivergenceGeometric SeriesTelescoping SeriesHarmonic SeriesRatio TestPartial Fraction Decomposition
2025/5/27

We need to determine whether the given series converge or diverge. If they converge, we need to find...

SeriesConvergenceDivergenceGeometric SeriesTelescoping SeriesDivergence Test
2025/5/27

The problem presents a sequence: $\sin 1, 2 \sin \frac{1}{2}, 3 \sin \frac{1}{3}, 4 \sin \frac{1}{4}...

SequencesLimitsTrigonometry
2025/5/27

The problem asks us to find an explicit formula $a_n$ for the given sequence, determine whether the ...

SequencesLimitsConvergenceExplicit Formula
2025/5/27

The problem asks us to analyze the sequence $a_n = e^{-n} \sin n$. We need to find the first few ter...

SequencesLimitsConvergenceSqueeze TheoremTrigonometric FunctionsExponential Functions
2025/5/27