We need to find the limit of the expression $\frac{x \sin(3x)}{\sin^2(5x)}$ as $x$ approaches 0. That is, we need to evaluate $A = \lim_{x \to 0} \frac{x \sin(3x)}{\sin^2(5x)}$.

AnalysisLimitsTrigonometric FunctionsL'Hopital's Rule
2025/5/27

1. Problem Description

We need to find the limit of the expression xsin(3x)sin2(5x)\frac{x \sin(3x)}{\sin^2(5x)} as xx approaches

0. That is, we need to evaluate $A = \lim_{x \to 0} \frac{x \sin(3x)}{\sin^2(5x)}$.

2. Solution Steps

We can rewrite the expression as:
A=limx0xsin2(5x)sin(3x)A = \lim_{x \to 0} \frac{x}{\sin^2(5x)} \cdot \sin(3x)
We know that limx0sin(x)x=1\lim_{x \to 0} \frac{\sin(x)}{x} = 1, which also implies limx0xsin(x)=1\lim_{x \to 0} \frac{x}{\sin(x)} = 1.
Then, limx0sin(ax)ax=1\lim_{x \to 0} \frac{\sin(ax)}{ax} = 1 implies limx0axsin(ax)=1\lim_{x \to 0} \frac{ax}{\sin(ax)} = 1.
We can rewrite the given limit as:
A=limx0xsin(3x)sin2(5x)=limx0xsin(5x)sin(3x)sin(5x)A = \lim_{x \to 0} \frac{x \sin(3x)}{\sin^2(5x)} = \lim_{x \to 0} \frac{x}{\sin(5x)} \cdot \frac{\sin(3x)}{\sin(5x)}
A=limx0xsin(5x)limx0sin(3x)sin(5x)A = \lim_{x \to 0} \frac{x}{\sin(5x)} \cdot \lim_{x \to 0} \frac{\sin(3x)}{\sin(5x)}
Let's evaluate the first limit:
limx0xsin(5x)=limx05x5sin(5x)=15limx05xsin(5x)=151=15\lim_{x \to 0} \frac{x}{\sin(5x)} = \lim_{x \to 0} \frac{5x}{5\sin(5x)} = \frac{1}{5} \lim_{x \to 0} \frac{5x}{\sin(5x)} = \frac{1}{5} \cdot 1 = \frac{1}{5}
Now, let's evaluate the second limit:
limx0sin(3x)sin(5x)=limx0sin(3x)3x5xsin(5x)3x5x=limx0sin(3x)3xlimx05xsin(5x)limx03x5x=1135=35\lim_{x \to 0} \frac{\sin(3x)}{\sin(5x)} = \lim_{x \to 0} \frac{\sin(3x)}{3x} \cdot \frac{5x}{\sin(5x)} \cdot \frac{3x}{5x} = \lim_{x \to 0} \frac{\sin(3x)}{3x} \cdot \lim_{x \to 0} \frac{5x}{\sin(5x)} \cdot \lim_{x \to 0} \frac{3x}{5x} = 1 \cdot 1 \cdot \frac{3}{5} = \frac{3}{5}
Therefore,
A=1535=325A = \frac{1}{5} \cdot \frac{3}{5} = \frac{3}{25}

3. Final Answer

3/25

Related problems in "Analysis"

We need to evaluate the definite integral and subtract a constant. The expression is: $A(R) = \int_{...

Definite IntegralIntegrationCalculus
2025/5/28

We are asked to evaluate the definite integral $\int_{-4}^3 [3-x-(x^2-a)] dx - \frac{\pi 3^2}{2}$.

Definite IntegralIntegrationCalculus
2025/5/28

We are asked to find the area bounded by the function $f(x) = \frac{4}{3}x^3 - 7.5x^2 + 10x$, the x-...

CalculusDefinite IntegralFinding MaximaDerivativesArea under a curve
2025/5/28

We need to find the area of the region limited by the graphs of the following functions: a) $f(x) = ...

Definite IntegralsArea CalculationAbsolute ValuePiecewise FunctionsCalculus
2025/5/28

The problem asks to find the area of the region bounded by the graph of $f(x) = |x| - |x-1|$ on the ...

Absolute ValueIntegrationPiecewise FunctionsDefinite IntegralArea Calculation
2025/5/28

We need to find the convergence set for the given power series. Let's solve the problems one by one.

Power SeriesRatio TestInterval of ConvergenceSeries Convergence
2025/5/28

We need to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n^3}{(2n...

SeriesConvergenceDivergenceRatio TestLimits
2025/5/28

Determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n^3}{(2n)!}$ using ...

SeriesConvergenceDivergenceRatio TestLimits
2025/5/28

We are asked to show that the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n(n+1)}$ and $\sum_{n=...

SeriesConvergenceAbsolute ConvergenceLimit Comparison TestRatio Test
2025/5/28

The problem asks us to show that the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\ln n}...

Infinite SeriesAlternating SeriesConvergenceAlternating Series TestError EstimationLimitsL'Hopital's Rule
2025/5/28