Problem 1: a n = n 3 n − 1 a_n = \frac{n}{3n-1} a n = 3 n − 1 n
First five terms:
a 1 = 1 3 ( 1 ) − 1 = 1 2 a_1 = \frac{1}{3(1)-1} = \frac{1}{2} a 1 = 3 ( 1 ) − 1 1 = 2 1 a 2 = 2 3 ( 2 ) − 1 = 2 5 a_2 = \frac{2}{3(2)-1} = \frac{2}{5} a 2 = 3 ( 2 ) − 1 2 = 5 2 a 3 = 3 3 ( 3 ) − 1 = 3 8 a_3 = \frac{3}{3(3)-1} = \frac{3}{8} a 3 = 3 ( 3 ) − 1 3 = 8 3 a 4 = 4 3 ( 4 ) − 1 = 4 11 a_4 = \frac{4}{3(4)-1} = \frac{4}{11} a 4 = 3 ( 4 ) − 1 4 = 11 4 a 5 = 5 3 ( 5 ) − 1 = 5 14 a_5 = \frac{5}{3(5)-1} = \frac{5}{14} a 5 = 3 ( 5 ) − 1 5 = 14 5
To find the limit, divide both numerator and denominator by n n n : lim n → ∞ a n = lim n → ∞ n 3 n − 1 = lim n → ∞ 1 3 − 1 n = 1 3 − 0 = 1 3 \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n}{3n-1} = \lim_{n \to \infty} \frac{1}{3 - \frac{1}{n}} = \frac{1}{3-0} = \frac{1}{3} lim n → ∞ a n = lim n → ∞ 3 n − 1 n = lim n → ∞ 3 − n 1 1 = 3 − 0 1 = 3 1
The sequence converges to 1 3 \frac{1}{3} 3 1 .
Problem 3: a n = 4 n 2 + 2 n 2 + 3 n − 1 a_n = \frac{4n^2+2}{n^2+3n-1} a n = n 2 + 3 n − 1 4 n 2 + 2
First five terms:
a 1 = 4 ( 1 ) 2 + 2 1 2 + 3 ( 1 ) − 1 = 6 3 = 2 a_1 = \frac{4(1)^2+2}{1^2+3(1)-1} = \frac{6}{3} = 2 a 1 = 1 2 + 3 ( 1 ) − 1 4 ( 1 ) 2 + 2 = 3 6 = 2 a 2 = 4 ( 2 ) 2 + 2 2 2 + 3 ( 2 ) − 1 = 18 9 = 2 a_2 = \frac{4(2)^2+2}{2^2+3(2)-1} = \frac{18}{9} = 2 a 2 = 2 2 + 3 ( 2 ) − 1 4 ( 2 ) 2 + 2 = 9 18 = 2 a 3 = 4 ( 3 ) 2 + 2 3 2 + 3 ( 3 ) − 1 = 38 17 a_3 = \frac{4(3)^2+2}{3^2+3(3)-1} = \frac{38}{17} a 3 = 3 2 + 3 ( 3 ) − 1 4 ( 3 ) 2 + 2 = 17 38 a 4 = 4 ( 4 ) 2 + 2 4 2 + 3 ( 4 ) − 1 = 66 27 = 22 9 a_4 = \frac{4(4)^2+2}{4^2+3(4)-1} = \frac{66}{27} = \frac{22}{9} a 4 = 4 2 + 3 ( 4 ) − 1 4 ( 4 ) 2 + 2 = 27 66 = 9 22 a 5 = 4 ( 5 ) 2 + 2 5 2 + 3 ( 5 ) − 1 = 102 39 = 34 13 a_5 = \frac{4(5)^2+2}{5^2+3(5)-1} = \frac{102}{39} = \frac{34}{13} a 5 = 5 2 + 3 ( 5 ) − 1 4 ( 5 ) 2 + 2 = 39 102 = 13 34
To find the limit, divide both numerator and denominator by n 2 n^2 n 2 : lim n → ∞ a n = lim n → ∞ 4 n 2 + 2 n 2 + 3 n − 1 = lim n → ∞ 4 + 2 n 2 1 + 3 n − 1 n 2 = 4 + 0 1 + 0 − 0 = 4 \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{4n^2+2}{n^2+3n-1} = \lim_{n \to \infty} \frac{4 + \frac{2}{n^2}}{1 + \frac{3}{n} - \frac{1}{n^2}} = \frac{4+0}{1+0-0} = 4 lim n → ∞ a n = lim n → ∞ n 2 + 3 n − 1 4 n 2 + 2 = lim n → ∞ 1 + n 3 − n 2 1 4 + n 2 2 = 1 + 0 − 0 4 + 0 = 4
The sequence converges to 4 4 4 .
Problem 5: a n = n 3 + 3 n 2 + 3 n ( n + 1 ) 3 a_n = \frac{n^3 + 3n^2 + 3n}{(n+1)^3} a n = ( n + 1 ) 3 n 3 + 3 n 2 + 3 n
First five terms:
a 1 = 1 3 + 3 ( 1 ) 2 + 3 ( 1 ) ( 1 + 1 ) 3 = 7 8 a_1 = \frac{1^3 + 3(1)^2 + 3(1)}{(1+1)^3} = \frac{7}{8} a 1 = ( 1 + 1 ) 3 1 3 + 3 ( 1 ) 2 + 3 ( 1 ) = 8 7 a 2 = 2 3 + 3 ( 2 ) 2 + 3 ( 2 ) ( 2 + 1 ) 3 = 8 + 12 + 6 27 = 26 27 a_2 = \frac{2^3 + 3(2)^2 + 3(2)}{(2+1)^3} = \frac{8+12+6}{27} = \frac{26}{27} a 2 = ( 2 + 1 ) 3 2 3 + 3 ( 2 ) 2 + 3 ( 2 ) = 27 8 + 12 + 6 = 27 26 a 3 = 3 3 + 3 ( 3 ) 2 + 3 ( 3 ) ( 3 + 1 ) 3 = 27 + 27 + 9 64 = 63 64 a_3 = \frac{3^3 + 3(3)^2 + 3(3)}{(3+1)^3} = \frac{27+27+9}{64} = \frac{63}{64} a 3 = ( 3 + 1 ) 3 3 3 + 3 ( 3 ) 2 + 3 ( 3 ) = 64 27 + 27 + 9 = 64 63 a 4 = 4 3 + 3 ( 4 ) 2 + 3 ( 4 ) ( 4 + 1 ) 3 = 64 + 48 + 12 125 = 124 125 a_4 = \frac{4^3 + 3(4)^2 + 3(4)}{(4+1)^3} = \frac{64+48+12}{125} = \frac{124}{125} a 4 = ( 4 + 1 ) 3 4 3 + 3 ( 4 ) 2 + 3 ( 4 ) = 125 64 + 48 + 12 = 125 124 a 5 = 5 3 + 3 ( 5 ) 2 + 3 ( 5 ) ( 5 + 1 ) 3 = 125 + 75 + 15 216 = 215 216 a_5 = \frac{5^3 + 3(5)^2 + 3(5)}{(5+1)^3} = \frac{125+75+15}{216} = \frac{215}{216} a 5 = ( 5 + 1 ) 3 5 3 + 3 ( 5 ) 2 + 3 ( 5 ) = 216 125 + 75 + 15 = 216 215
a n = n 3 + 3 n 2 + 3 n ( n + 1 ) 3 = n 3 + 3 n 2 + 3 n n 3 + 3 n 2 + 3 n + 1 a_n = \frac{n^3 + 3n^2 + 3n}{(n+1)^3} = \frac{n^3 + 3n^2 + 3n}{n^3 + 3n^2 + 3n + 1} a n = ( n + 1 ) 3 n 3 + 3 n 2 + 3 n = n 3 + 3 n 2 + 3 n + 1 n 3 + 3 n 2 + 3 n
lim n → ∞ a n = lim n → ∞ n 3 + 3 n 2 + 3 n n 3 + 3 n 2 + 3 n + 1 = lim n → ∞ 1 + 3 n + 3 n 2 1 + 3 n + 3 n 2 + 1 n 3 = 1 + 0 + 0 1 + 0 + 0 + 0 = 1 \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^3 + 3n^2 + 3n}{n^3 + 3n^2 + 3n + 1} = \lim_{n \to \infty} \frac{1 + \frac{3}{n} + \frac{3}{n^2}}{1 + \frac{3}{n} + \frac{3}{n^2} + \frac{1}{n^3}} = \frac{1+0+0}{1+0+0+0} = 1 lim n → ∞ a n = lim n → ∞ n 3 + 3 n 2 + 3 n + 1 n 3 + 3 n 2 + 3 n = lim n → ∞ 1 + n 3 + n 2 3 + n 3 1 1 + n 3 + n 2 3 = 1 + 0 + 0 + 0 1 + 0 + 0 = 1
The sequence converges to 1 1 1 .
Problem 6: a n = 3 n 2 + 2 2 n + 1 a_n = \frac{\sqrt{3n^2 + 2}}{2n + 1} a n = 2 n + 1 3 n 2 + 2
First five terms:
a 1 = 3 ( 1 ) 2 + 2 2 ( 1 ) + 1 = 5 3 a_1 = \frac{\sqrt{3(1)^2+2}}{2(1)+1} = \frac{\sqrt{5}}{3} a 1 = 2 ( 1 ) + 1 3 ( 1 ) 2 + 2 = 3 5 a 2 = 3 ( 2 ) 2 + 2 2 ( 2 ) + 1 = 14 5 a_2 = \frac{\sqrt{3(2)^2+2}}{2(2)+1} = \frac{\sqrt{14}}{5} a 2 = 2 ( 2 ) + 1 3 ( 2 ) 2 + 2 = 5 14 a 3 = 3 ( 3 ) 2 + 2 2 ( 3 ) + 1 = 29 7 a_3 = \frac{\sqrt{3(3)^2+2}}{2(3)+1} = \frac{\sqrt{29}}{7} a 3 = 2 ( 3 ) + 1 3 ( 3 ) 2 + 2 = 7 29 a 4 = 3 ( 4 ) 2 + 2 2 ( 4 ) + 1 = 50 9 = 5 2 9 a_4 = \frac{\sqrt{3(4)^2+2}}{2(4)+1} = \frac{\sqrt{50}}{9} = \frac{5\sqrt{2}}{9} a 4 = 2 ( 4 ) + 1 3 ( 4 ) 2 + 2 = 9 50 = 9 5 2 a 5 = 3 ( 5 ) 2 + 2 2 ( 5 ) + 1 = 77 11 a_5 = \frac{\sqrt{3(5)^2+2}}{2(5)+1} = \frac{\sqrt{77}}{11} a 5 = 2 ( 5 ) + 1 3 ( 5 ) 2 + 2 = 11 77
lim n → ∞ a n = lim n → ∞ 3 n 2 + 2 2 n + 1 = lim n → ∞ n 2 ( 3 + 2 n 2 ) n ( 2 + 1 n ) = lim n → ∞ n 3 + 2 n 2 n ( 2 + 1 n ) = lim n → ∞ 3 + 2 n 2 2 + 1 n = 3 + 0 2 + 0 = 3 2 \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\sqrt{3n^2 + 2}}{2n + 1} = \lim_{n \to \infty} \frac{\sqrt{n^2(3 + \frac{2}{n^2})}}{n(2 + \frac{1}{n})} = \lim_{n \to \infty} \frac{n\sqrt{3 + \frac{2}{n^2}}}{n(2 + \frac{1}{n})} = \lim_{n \to \infty} \frac{\sqrt{3 + \frac{2}{n^2}}}{2 + \frac{1}{n}} = \frac{\sqrt{3+0}}{2+0} = \frac{\sqrt{3}}{2} lim n → ∞ a n = lim n → ∞ 2 n + 1 3 n 2 + 2 = lim n → ∞ n ( 2 + n 1 ) n 2 ( 3 + n 2 2 ) = lim n → ∞ n ( 2 + n 1 ) n 3 + n 2 2 = lim n → ∞ 2 + n 1 3 + n 2 2 = 2 + 0 3 + 0 = 2 3
The sequence converges to 3 2 \frac{\sqrt{3}}{2} 2 3 .
Problem 11: a n = e 2 n n 2 + 3 n − 1 a_n = \frac{e^{2n}}{n^2 + 3n - 1} a n = n 2 + 3 n − 1 e 2 n
First five terms:
a 1 = e 2 ( 1 ) 1 2 + 3 ( 1 ) − 1 = e 2 3 a_1 = \frac{e^{2(1)}}{1^2 + 3(1) - 1} = \frac{e^2}{3} a 1 = 1 2 + 3 ( 1 ) − 1 e 2 ( 1 ) = 3 e 2 a 2 = e 2 ( 2 ) 2 2 + 3 ( 2 ) − 1 = e 4 9 a_2 = \frac{e^{2(2)}}{2^2 + 3(2) - 1} = \frac{e^4}{9} a 2 = 2 2 + 3 ( 2 ) − 1 e 2 ( 2 ) = 9 e 4 a 3 = e 2 ( 3 ) 3 2 + 3 ( 3 ) − 1 = e 6 17 a_3 = \frac{e^{2(3)}}{3^2 + 3(3) - 1} = \frac{e^6}{17} a 3 = 3 2 + 3 ( 3 ) − 1 e 2 ( 3 ) = 17 e 6 a 4 = e 2 ( 4 ) 4 2 + 3 ( 4 ) − 1 = e 8 27 a_4 = \frac{e^{2(4)}}{4^2 + 3(4) - 1} = \frac{e^8}{27} a 4 = 4 2 + 3 ( 4 ) − 1 e 2 ( 4 ) = 27 e 8 a 5 = e 2 ( 5 ) 5 2 + 3 ( 5 ) − 1 = e 10 39 a_5 = \frac{e^{2(5)}}{5^2 + 3(5) - 1} = \frac{e^{10}}{39} a 5 = 5 2 + 3 ( 5 ) − 1 e 2 ( 5 ) = 39 e 10
Using L'Hopital's rule:
lim n → ∞ a n = lim n → ∞ e 2 n n 2 + 3 n − 1 = lim n → ∞ 2 e 2 n 2 n + 3 = lim n → ∞ 4 e 2 n 2 = lim n → ∞ 2 e 2 n = ∞ \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{e^{2n}}{n^2 + 3n - 1} = \lim_{n \to \infty} \frac{2e^{2n}}{2n + 3} = \lim_{n \to \infty} \frac{4e^{2n}}{2} = \lim_{n \to \infty} 2e^{2n} = \infty lim n → ∞ a n = lim n → ∞ n 2 + 3 n − 1 e 2 n = lim n → ∞ 2 n + 3 2 e 2 n = lim n → ∞ 2 4 e 2 n = lim n → ∞ 2 e 2 n = ∞
The sequence diverges to ∞ \infty ∞ .
Problem 13: a n = ( − π ) n 5 n a_n = \frac{(-\pi)^n}{5^n} a n = 5 n ( − π ) n
First five terms:
a 1 = ( − π ) 1 5 1 = − π 5 a_1 = \frac{(-\pi)^1}{5^1} = -\frac{\pi}{5} a 1 = 5 1 ( − π ) 1 = − 5 π a 2 = ( − π ) 2 5 2 = π 2 25 a_2 = \frac{(-\pi)^2}{5^2} = \frac{\pi^2}{25} a 2 = 5 2 ( − π ) 2 = 25 π 2 a 3 = ( − π ) 3 5 3 = − π 3 125 a_3 = \frac{(-\pi)^3}{5^3} = -\frac{\pi^3}{125} a 3 = 5 3 ( − π ) 3 = − 125 π 3 a 4 = ( − π ) 4 5 4 = π 4 625 a_4 = \frac{(-\pi)^4}{5^4} = \frac{\pi^4}{625} a 4 = 5 4 ( − π ) 4 = 625 π 4 a 5 = ( − π ) 5 5 5 = − π 5 3125 a_5 = \frac{(-\pi)^5}{5^5} = -\frac{\pi^5}{3125} a 5 = 5 5 ( − π ) 5 = − 3125 π 5
a n = ( − π 5 ) n a_n = \left(-\frac{\pi}{5}\right)^n a n = ( − 5 π ) n
Since ∣ − π 5 ∣ = π 5 ≈ 3.14 5 < 1 |\frac{-\pi}{5}| = \frac{\pi}{5} \approx \frac{3.14}{5} < 1 ∣ 5 − π ∣ = 5 π ≈ 5 3.14 < 1 , the sequence converges to 0 0 0 . lim n → ∞ a n = lim n → ∞ ( − π 5 ) n = 0 \lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(-\frac{\pi}{5}\right)^n = 0 lim n → ∞ a n = lim n → ∞ ( − 5 π ) n = 0
Problem 14: a n = ( 1 4 ) n + 3 n 2 a_n = (\frac{1}{4})^n + \frac{3n}{2} a n = ( 4 1 ) n + 2 3 n
First five terms:
a 1 = ( 1 4 ) 1 + 3 ( 1 ) 2 = 1 4 + 3 2 = 1 4 + 6 4 = 7 4 a_1 = (\frac{1}{4})^1 + \frac{3(1)}{2} = \frac{1}{4} + \frac{3}{2} = \frac{1}{4} + \frac{6}{4} = \frac{7}{4} a 1 = ( 4 1 ) 1 + 2 3 ( 1 ) = 4 1 + 2 3 = 4 1 + 4 6 = 4 7 a 2 = ( 1 4 ) 2 + 3 ( 2 ) 2 = 1 16 + 3 = 1 + 48 16 = 49 16 a_2 = (\frac{1}{4})^2 + \frac{3(2)}{2} = \frac{1}{16} + 3 = \frac{1+48}{16} = \frac{49}{16} a 2 = ( 4 1 ) 2 + 2 3 ( 2 ) = 16 1 + 3 = 16 1 + 48 = 16 49 a 3 = ( 1 4 ) 3 + 3 ( 3 ) 2 = 1 64 + 9 2 = 1 + 288 64 = 289 64 a_3 = (\frac{1}{4})^3 + \frac{3(3)}{2} = \frac{1}{64} + \frac{9}{2} = \frac{1+288}{64} = \frac{289}{64} a 3 = ( 4 1 ) 3 + 2 3 ( 3 ) = 64 1 + 2 9 = 64 1 + 288 = 64 289 a 4 = ( 1 4 ) 4 + 3 ( 4 ) 2 = 1 256 + 6 = 1 + 1536 256 = 1537 256 a_4 = (\frac{1}{4})^4 + \frac{3(4)}{2} = \frac{1}{256} + 6 = \frac{1+1536}{256} = \frac{1537}{256} a 4 = ( 4 1 ) 4 + 2 3 ( 4 ) = 256 1 + 6 = 256 1 + 1536 = 256 1537 a 5 = ( 1 4 ) 5 + 3 ( 5 ) 2 = 1 1024 + 15 2 = 1 + 7680 1024 = 7681 1024 a_5 = (\frac{1}{4})^5 + \frac{3(5)}{2} = \frac{1}{1024} + \frac{15}{2} = \frac{1+7680}{1024} = \frac{7681}{1024} a 5 = ( 4 1 ) 5 + 2 3 ( 5 ) = 1024 1 + 2 15 = 1024 1 + 7680 = 1024 7681
lim n → ∞ a n = lim n → ∞ ( 1 4 ) n + 3 n 2 = 0 + ∞ = ∞ \lim_{n \to \infty} a_n = \lim_{n \to \infty} (\frac{1}{4})^n + \frac{3n}{2} = 0 + \infty = \infty lim n → ∞ a n = lim n → ∞ ( 4 1 ) n + 2 3 n = 0 + ∞ = ∞
The sequence diverges to ∞ \infty ∞ .
Problem 16: a n = n 100 e n a_n = \frac{n^{100}}{e^n} a n = e n n 100
First five terms:
a 1 = 1 100 e 1 = 1 e a_1 = \frac{1^{100}}{e^1} = \frac{1}{e} a 1 = e 1 1 100 = e 1 a 2 = 2 100 e 2 a_2 = \frac{2^{100}}{e^2} a 2 = e 2 2 100 a 3 = 3 100 e 3 a_3 = \frac{3^{100}}{e^3} a 3 = e 3 3 100 a 4 = 4 100 e 4 a_4 = \frac{4^{100}}{e^4} a 4 = e 4 4 100 a 5 = 5 100 e 5 a_5 = \frac{5^{100}}{e^5} a 5 = e 5 5 100
Using L'Hopital's rule repeatedly, we know that exponential growth is faster than polynomial growth.
lim n → ∞ a n = lim n → ∞ n 100 e n = 0 \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^{100}}{e^n} = 0 lim n → ∞ a n = lim n → ∞ e n n 100 = 0
The sequence converges to 0 0 0 .
Problem 17: a n = ln n n a_n = \frac{\ln n}{\sqrt{n}} a n = n l n n
First five terms:
a 1 = ln 1 1 = 0 1 = 0 a_1 = \frac{\ln 1}{\sqrt{1}} = \frac{0}{1} = 0 a 1 = 1 l n 1 = 1 0 = 0 a 2 = ln 2 2 ≈ 0.693 1.414 ≈ 0.49 a_2 = \frac{\ln 2}{\sqrt{2}} \approx \frac{0.693}{1.414} \approx 0.49 a 2 = 2 l n 2 ≈ 1.414 0.693 ≈ 0.49 a 3 = ln 3 3 ≈ 1.099 1.732 ≈ 0.63 a_3 = \frac{\ln 3}{\sqrt{3}} \approx \frac{1.099}{1.732} \approx 0.63 a 3 = 3 l n 3 ≈ 1.732 1.099 ≈ 0.63 a 4 = ln 4 4 = 2 ln 2 2 = ln 2 ≈ 0.693 a_4 = \frac{\ln 4}{\sqrt{4}} = \frac{2\ln 2}{2} = \ln 2 \approx 0.693 a 4 = 4 l n 4 = 2 2 l n 2 = ln 2 ≈ 0.693 a 5 = ln 5 5 ≈ 1.609 2.236 ≈ 0.72 a_5 = \frac{\ln 5}{\sqrt{5}} \approx \frac{1.609}{2.236} \approx 0.72 a 5 = 5 l n 5 ≈ 2.236 1.609 ≈ 0.72
Using L'Hopital's rule:
lim n → ∞ a n = lim n → ∞ ln n n = lim n → ∞ 1 n 1 2 n = lim n → ∞ 2 n n = lim n → ∞ 2 n = 0 \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\ln n}{\sqrt{n}} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{1}{2\sqrt{n}}} = \lim_{n \to \infty} \frac{2\sqrt{n}}{n} = \lim_{n \to \infty} \frac{2}{\sqrt{n}} = 0 lim n → ∞ a n = lim n → ∞ n l n n = lim n → ∞ 2 n 1 n 1 = lim n → ∞ n 2 n = lim n → ∞ n 2 = 0
The sequence converges to 0 0 0 .
Problem 18: a n = ln ( 1 n ) 2 n a_n = \frac{\ln(\frac{1}{n})}{\sqrt{2n}} a n = 2 n l n ( n 1 )
First five terms:
a 1 = ln ( 1 1 ) 2 ( 1 ) = ln 1 2 = 0 2 = 0 a_1 = \frac{\ln(\frac{1}{1})}{\sqrt{2(1)}} = \frac{\ln 1}{\sqrt{2}} = \frac{0}{\sqrt{2}} = 0 a 1 = 2 ( 1 ) l n ( 1 1 ) = 2 l n 1 = 2 0 = 0 a 2 = ln ( 1 2 ) 2 ( 2 ) = − ln 2 2 ≈ − 0.693 2 ≈ − 0.347 a_2 = \frac{\ln(\frac{1}{2})}{\sqrt{2(2)}} = \frac{-\ln 2}{2} \approx \frac{-0.693}{2} \approx -0.347 a 2 = 2 ( 2 ) l n ( 2 1 ) = 2 − l n 2 ≈ 2 − 0.693 ≈ − 0.347 a 3 = ln ( 1 3 ) 2 ( 3 ) = − ln 3 6 ≈ − 1.099 2.449 ≈ − 0.449 a_3 = \frac{\ln(\frac{1}{3})}{\sqrt{2(3)}} = \frac{-\ln 3}{\sqrt{6}} \approx \frac{-1.099}{2.449} \approx -0.449 a 3 = 2 ( 3 ) l n ( 3 1 ) = 6 − l n 3 ≈ 2.449 − 1.099 ≈ − 0.449 a 4 = ln ( 1 4 ) 2 ( 4 ) = − ln 4 8 = − 2 ln 2 2 2 = − ln 2 2 ≈ − 0.49 a_4 = \frac{\ln(\frac{1}{4})}{\sqrt{2(4)}} = \frac{-\ln 4}{\sqrt{8}} = \frac{-2\ln 2}{2\sqrt{2}} = \frac{-\ln 2}{\sqrt{2}} \approx -0.49 a 4 = 2 ( 4 ) l n ( 4 1 ) = 8 − l n 4 = 2 2 − 2 l n 2 = 2 − l n 2 ≈ − 0.49 a 5 = ln ( 1 5 ) 2 ( 5 ) = − ln 5 10 ≈ − 1.609 3.162 ≈ − 0.509 a_5 = \frac{\ln(\frac{1}{5})}{\sqrt{2(5)}} = \frac{-\ln 5}{\sqrt{10}} \approx \frac{-1.609}{3.162} \approx -0.509 a 5 = 2 ( 5 ) l n ( 5 1 ) = 10 − l n 5 ≈ 3.162 − 1.609 ≈ − 0.509
lim n → ∞ a n = lim n → ∞ ln ( 1 n ) 2 n = lim n → ∞ − ln n 2 n \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\ln(\frac{1}{n})}{\sqrt{2n}} = \lim_{n \to \infty} \frac{-\ln n}{\sqrt{2n}} lim n → ∞ a n = lim n → ∞ 2 n l n ( n 1 ) = lim n → ∞ 2 n − l n n
Using L'Hopital's rule:
lim n → ∞ a n = lim n → ∞ − ln n 2 n = lim n → ∞ − 1 n 2 2 n = lim n → ∞ − 2 n n 2 = lim n → ∞ − 2 2 n = 0 \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{-\ln n}{\sqrt{2n}} = \lim_{n \to \infty} \frac{-\frac{1}{n}}{\frac{\sqrt{2}}{2\sqrt{n}}} = \lim_{n \to \infty} \frac{-2\sqrt{n}}{n\sqrt{2}} = \lim_{n \to \infty} \frac{-2}{\sqrt{2n}} = 0 lim n → ∞ a n = lim n → ∞ 2 n − l n n = lim n → ∞ 2 n 2 − n 1 = lim n → ∞ n 2 − 2 n = lim n → ∞ 2 n − 2 = 0
The sequence converges to 0 0 0 .