The problem asks us to analyze several sequences given by their explicit formulas. For each sequence $a_n$, we need to find the first five terms, determine if the sequence converges or diverges, and if it converges, find the limit as $n$ approaches infinity. I will analyze problems 1, 3, 5, 6, 11, 13, 14, 16, 17 and 18.

AnalysisSequencesLimitsConvergenceDivergenceL'Hopital's Rule
2025/5/27

1. Problem Description

The problem asks us to analyze several sequences given by their explicit formulas. For each sequence ana_n, we need to find the first five terms, determine if the sequence converges or diverges, and if it converges, find the limit as nn approaches infinity. I will analyze problems 1, 3, 5, 6, 11, 13, 14, 16, 17 and
1
8.

2. Solution Steps

Problem 1: an=n3n1a_n = \frac{n}{3n-1}
First five terms:
a1=13(1)1=12a_1 = \frac{1}{3(1)-1} = \frac{1}{2}
a2=23(2)1=25a_2 = \frac{2}{3(2)-1} = \frac{2}{5}
a3=33(3)1=38a_3 = \frac{3}{3(3)-1} = \frac{3}{8}
a4=43(4)1=411a_4 = \frac{4}{3(4)-1} = \frac{4}{11}
a5=53(5)1=514a_5 = \frac{5}{3(5)-1} = \frac{5}{14}
To find the limit, divide both numerator and denominator by nn:
limnan=limnn3n1=limn131n=130=13\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n}{3n-1} = \lim_{n \to \infty} \frac{1}{3 - \frac{1}{n}} = \frac{1}{3-0} = \frac{1}{3}
The sequence converges to 13\frac{1}{3}.
Problem 3: an=4n2+2n2+3n1a_n = \frac{4n^2+2}{n^2+3n-1}
First five terms:
a1=4(1)2+212+3(1)1=63=2a_1 = \frac{4(1)^2+2}{1^2+3(1)-1} = \frac{6}{3} = 2
a2=4(2)2+222+3(2)1=189=2a_2 = \frac{4(2)^2+2}{2^2+3(2)-1} = \frac{18}{9} = 2
a3=4(3)2+232+3(3)1=3817a_3 = \frac{4(3)^2+2}{3^2+3(3)-1} = \frac{38}{17}
a4=4(4)2+242+3(4)1=6627=229a_4 = \frac{4(4)^2+2}{4^2+3(4)-1} = \frac{66}{27} = \frac{22}{9}
a5=4(5)2+252+3(5)1=10239=3413a_5 = \frac{4(5)^2+2}{5^2+3(5)-1} = \frac{102}{39} = \frac{34}{13}
To find the limit, divide both numerator and denominator by n2n^2:
limnan=limn4n2+2n2+3n1=limn4+2n21+3n1n2=4+01+00=4\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{4n^2+2}{n^2+3n-1} = \lim_{n \to \infty} \frac{4 + \frac{2}{n^2}}{1 + \frac{3}{n} - \frac{1}{n^2}} = \frac{4+0}{1+0-0} = 4
The sequence converges to 44.
Problem 5: an=n3+3n2+3n(n+1)3a_n = \frac{n^3 + 3n^2 + 3n}{(n+1)^3}
First five terms:
a1=13+3(1)2+3(1)(1+1)3=78a_1 = \frac{1^3 + 3(1)^2 + 3(1)}{(1+1)^3} = \frac{7}{8}
a2=23+3(2)2+3(2)(2+1)3=8+12+627=2627a_2 = \frac{2^3 + 3(2)^2 + 3(2)}{(2+1)^3} = \frac{8+12+6}{27} = \frac{26}{27}
a3=33+3(3)2+3(3)(3+1)3=27+27+964=6364a_3 = \frac{3^3 + 3(3)^2 + 3(3)}{(3+1)^3} = \frac{27+27+9}{64} = \frac{63}{64}
a4=43+3(4)2+3(4)(4+1)3=64+48+12125=124125a_4 = \frac{4^3 + 3(4)^2 + 3(4)}{(4+1)^3} = \frac{64+48+12}{125} = \frac{124}{125}
a5=53+3(5)2+3(5)(5+1)3=125+75+15216=215216a_5 = \frac{5^3 + 3(5)^2 + 3(5)}{(5+1)^3} = \frac{125+75+15}{216} = \frac{215}{216}
an=n3+3n2+3n(n+1)3=n3+3n2+3nn3+3n2+3n+1a_n = \frac{n^3 + 3n^2 + 3n}{(n+1)^3} = \frac{n^3 + 3n^2 + 3n}{n^3 + 3n^2 + 3n + 1}
limnan=limnn3+3n2+3nn3+3n2+3n+1=limn1+3n+3n21+3n+3n2+1n3=1+0+01+0+0+0=1\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^3 + 3n^2 + 3n}{n^3 + 3n^2 + 3n + 1} = \lim_{n \to \infty} \frac{1 + \frac{3}{n} + \frac{3}{n^2}}{1 + \frac{3}{n} + \frac{3}{n^2} + \frac{1}{n^3}} = \frac{1+0+0}{1+0+0+0} = 1
The sequence converges to 11.
Problem 6: an=3n2+22n+1a_n = \frac{\sqrt{3n^2 + 2}}{2n + 1}
First five terms:
a1=3(1)2+22(1)+1=53a_1 = \frac{\sqrt{3(1)^2+2}}{2(1)+1} = \frac{\sqrt{5}}{3}
a2=3(2)2+22(2)+1=145a_2 = \frac{\sqrt{3(2)^2+2}}{2(2)+1} = \frac{\sqrt{14}}{5}
a3=3(3)2+22(3)+1=297a_3 = \frac{\sqrt{3(3)^2+2}}{2(3)+1} = \frac{\sqrt{29}}{7}
a4=3(4)2+22(4)+1=509=529a_4 = \frac{\sqrt{3(4)^2+2}}{2(4)+1} = \frac{\sqrt{50}}{9} = \frac{5\sqrt{2}}{9}
a5=3(5)2+22(5)+1=7711a_5 = \frac{\sqrt{3(5)^2+2}}{2(5)+1} = \frac{\sqrt{77}}{11}
limnan=limn3n2+22n+1=limnn2(3+2n2)n(2+1n)=limnn3+2n2n(2+1n)=limn3+2n22+1n=3+02+0=32\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\sqrt{3n^2 + 2}}{2n + 1} = \lim_{n \to \infty} \frac{\sqrt{n^2(3 + \frac{2}{n^2})}}{n(2 + \frac{1}{n})} = \lim_{n \to \infty} \frac{n\sqrt{3 + \frac{2}{n^2}}}{n(2 + \frac{1}{n})} = \lim_{n \to \infty} \frac{\sqrt{3 + \frac{2}{n^2}}}{2 + \frac{1}{n}} = \frac{\sqrt{3+0}}{2+0} = \frac{\sqrt{3}}{2}
The sequence converges to 32\frac{\sqrt{3}}{2}.
Problem 11: an=e2nn2+3n1a_n = \frac{e^{2n}}{n^2 + 3n - 1}
First five terms:
a1=e2(1)12+3(1)1=e23a_1 = \frac{e^{2(1)}}{1^2 + 3(1) - 1} = \frac{e^2}{3}
a2=e2(2)22+3(2)1=e49a_2 = \frac{e^{2(2)}}{2^2 + 3(2) - 1} = \frac{e^4}{9}
a3=e2(3)32+3(3)1=e617a_3 = \frac{e^{2(3)}}{3^2 + 3(3) - 1} = \frac{e^6}{17}
a4=e2(4)42+3(4)1=e827a_4 = \frac{e^{2(4)}}{4^2 + 3(4) - 1} = \frac{e^8}{27}
a5=e2(5)52+3(5)1=e1039a_5 = \frac{e^{2(5)}}{5^2 + 3(5) - 1} = \frac{e^{10}}{39}
Using L'Hopital's rule:
limnan=limne2nn2+3n1=limn2e2n2n+3=limn4e2n2=limn2e2n=\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{e^{2n}}{n^2 + 3n - 1} = \lim_{n \to \infty} \frac{2e^{2n}}{2n + 3} = \lim_{n \to \infty} \frac{4e^{2n}}{2} = \lim_{n \to \infty} 2e^{2n} = \infty
The sequence diverges to \infty.
Problem 13: an=(π)n5na_n = \frac{(-\pi)^n}{5^n}
First five terms:
a1=(π)151=π5a_1 = \frac{(-\pi)^1}{5^1} = -\frac{\pi}{5}
a2=(π)252=π225a_2 = \frac{(-\pi)^2}{5^2} = \frac{\pi^2}{25}
a3=(π)353=π3125a_3 = \frac{(-\pi)^3}{5^3} = -\frac{\pi^3}{125}
a4=(π)454=π4625a_4 = \frac{(-\pi)^4}{5^4} = \frac{\pi^4}{625}
a5=(π)555=π53125a_5 = \frac{(-\pi)^5}{5^5} = -\frac{\pi^5}{3125}
an=(π5)na_n = \left(-\frac{\pi}{5}\right)^n
Since π5=π53.145<1|\frac{-\pi}{5}| = \frac{\pi}{5} \approx \frac{3.14}{5} < 1, the sequence converges to 00.
limnan=limn(π5)n=0\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(-\frac{\pi}{5}\right)^n = 0
Problem 14: an=(14)n+3n2a_n = (\frac{1}{4})^n + \frac{3n}{2}
First five terms:
a1=(14)1+3(1)2=14+32=14+64=74a_1 = (\frac{1}{4})^1 + \frac{3(1)}{2} = \frac{1}{4} + \frac{3}{2} = \frac{1}{4} + \frac{6}{4} = \frac{7}{4}
a2=(14)2+3(2)2=116+3=1+4816=4916a_2 = (\frac{1}{4})^2 + \frac{3(2)}{2} = \frac{1}{16} + 3 = \frac{1+48}{16} = \frac{49}{16}
a3=(14)3+3(3)2=164+92=1+28864=28964a_3 = (\frac{1}{4})^3 + \frac{3(3)}{2} = \frac{1}{64} + \frac{9}{2} = \frac{1+288}{64} = \frac{289}{64}
a4=(14)4+3(4)2=1256+6=1+1536256=1537256a_4 = (\frac{1}{4})^4 + \frac{3(4)}{2} = \frac{1}{256} + 6 = \frac{1+1536}{256} = \frac{1537}{256}
a5=(14)5+3(5)2=11024+152=1+76801024=76811024a_5 = (\frac{1}{4})^5 + \frac{3(5)}{2} = \frac{1}{1024} + \frac{15}{2} = \frac{1+7680}{1024} = \frac{7681}{1024}
limnan=limn(14)n+3n2=0+=\lim_{n \to \infty} a_n = \lim_{n \to \infty} (\frac{1}{4})^n + \frac{3n}{2} = 0 + \infty = \infty
The sequence diverges to \infty.
Problem 16: an=n100ena_n = \frac{n^{100}}{e^n}
First five terms:
a1=1100e1=1ea_1 = \frac{1^{100}}{e^1} = \frac{1}{e}
a2=2100e2a_2 = \frac{2^{100}}{e^2}
a3=3100e3a_3 = \frac{3^{100}}{e^3}
a4=4100e4a_4 = \frac{4^{100}}{e^4}
a5=5100e5a_5 = \frac{5^{100}}{e^5}
Using L'Hopital's rule repeatedly, we know that exponential growth is faster than polynomial growth.
limnan=limnn100en=0\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^{100}}{e^n} = 0
The sequence converges to 00.
Problem 17: an=lnnna_n = \frac{\ln n}{\sqrt{n}}
First five terms:
a1=ln11=01=0a_1 = \frac{\ln 1}{\sqrt{1}} = \frac{0}{1} = 0
a2=ln220.6931.4140.49a_2 = \frac{\ln 2}{\sqrt{2}} \approx \frac{0.693}{1.414} \approx 0.49
a3=ln331.0991.7320.63a_3 = \frac{\ln 3}{\sqrt{3}} \approx \frac{1.099}{1.732} \approx 0.63
a4=ln44=2ln22=ln20.693a_4 = \frac{\ln 4}{\sqrt{4}} = \frac{2\ln 2}{2} = \ln 2 \approx 0.693
a5=ln551.6092.2360.72a_5 = \frac{\ln 5}{\sqrt{5}} \approx \frac{1.609}{2.236} \approx 0.72
Using L'Hopital's rule:
limnan=limnlnnn=limn1n12n=limn2nn=limn2n=0\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\ln n}{\sqrt{n}} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{1}{2\sqrt{n}}} = \lim_{n \to \infty} \frac{2\sqrt{n}}{n} = \lim_{n \to \infty} \frac{2}{\sqrt{n}} = 0
The sequence converges to 00.
Problem 18: an=ln(1n)2na_n = \frac{\ln(\frac{1}{n})}{\sqrt{2n}}
First five terms:
a1=ln(11)2(1)=ln12=02=0a_1 = \frac{\ln(\frac{1}{1})}{\sqrt{2(1)}} = \frac{\ln 1}{\sqrt{2}} = \frac{0}{\sqrt{2}} = 0
a2=ln(12)2(2)=ln220.69320.347a_2 = \frac{\ln(\frac{1}{2})}{\sqrt{2(2)}} = \frac{-\ln 2}{2} \approx \frac{-0.693}{2} \approx -0.347
a3=ln(13)2(3)=ln361.0992.4490.449a_3 = \frac{\ln(\frac{1}{3})}{\sqrt{2(3)}} = \frac{-\ln 3}{\sqrt{6}} \approx \frac{-1.099}{2.449} \approx -0.449
a4=ln(14)2(4)=ln48=2ln222=ln220.49a_4 = \frac{\ln(\frac{1}{4})}{\sqrt{2(4)}} = \frac{-\ln 4}{\sqrt{8}} = \frac{-2\ln 2}{2\sqrt{2}} = \frac{-\ln 2}{\sqrt{2}} \approx -0.49
a5=ln(15)2(5)=ln5101.6093.1620.509a_5 = \frac{\ln(\frac{1}{5})}{\sqrt{2(5)}} = \frac{-\ln 5}{\sqrt{10}} \approx \frac{-1.609}{3.162} \approx -0.509
limnan=limnln(1n)2n=limnlnn2n\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\ln(\frac{1}{n})}{\sqrt{2n}} = \lim_{n \to \infty} \frac{-\ln n}{\sqrt{2n}}
Using L'Hopital's rule:
limnan=limnlnn2n=limn1n22n=limn2nn2=limn22n=0\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{-\ln n}{\sqrt{2n}} = \lim_{n \to \infty} \frac{-\frac{1}{n}}{\frac{\sqrt{2}}{2\sqrt{n}}} = \lim_{n \to \infty} \frac{-2\sqrt{n}}{n\sqrt{2}} = \lim_{n \to \infty} \frac{-2}{\sqrt{2n}} = 0
The sequence converges to 00.

3. Final Answer

Problem 1: First five terms are 12,25,38,411,514\frac{1}{2}, \frac{2}{5}, \frac{3}{8}, \frac{4}{11}, \frac{5}{14}. The sequence converges to 13\frac{1}{3}.
Problem 3: First five terms are 2,2,3817,229,34132, 2, \frac{38}{17}, \frac{22}{9}, \frac{34}{13}. The sequence converges to 44.
Problem 5: First five terms are 78,2627,6364,124125,215216\frac{7}{8}, \frac{26}{27}, \frac{63}{64}, \frac{124}{125}, \frac{215}{216}. The sequence converges to 11.
Problem 6: First five terms are 53,145,297,529,7711\frac{\sqrt{5}}{3}, \frac{\sqrt{14}}{5}, \frac{\sqrt{29}}{7}, \frac{5\sqrt{2}}{9}, \frac{\sqrt{77}}{11}. The sequence converges to 32\frac{\sqrt{3}}{2}.
Problem 11: First five terms are e23,e49,e617,e827,e1039\frac{e^2}{3}, \frac{e^4}{9}, \frac{e^6}{17}, \frac{e^8}{27}, \frac{e^{10}}{39}. The sequence diverges to \infty.
Problem 13: First five terms are π5,π225,π3125,π4625,π53125-\frac{\pi}{5}, \frac{\pi^2}{25}, -\frac{\pi^3}{125}, \frac{\pi^4}{625}, -\frac{\pi^5}{3125}. The sequence converges to 00.
Problem 14: First five terms are 74,4916,28964,1537256,76811024\frac{7}{4}, \frac{49}{16}, \frac{289}{64}, \frac{1537}{256}, \frac{7681}{1024}. The sequence diverges to \infty.
Problem 16: First five terms are 1e,2100e2,3100e3,4100e4,5100e5\frac{1}{e}, \frac{2^{100}}{e^2}, \frac{3^{100}}{e^3}, \frac{4^{100}}{e^4}, \frac{5^{100}}{e^5}. The sequence converges to 00.
Problem 17: First five terms are 0,ln22,ln33,ln2,ln550, \frac{\ln 2}{\sqrt{2}}, \frac{\ln 3}{\sqrt{3}}, \ln 2, \frac{\ln 5}{\sqrt{5}}. The sequence converges to 00.
Problem 18: First five terms are 0,ln22,ln36,ln22,ln5100, \frac{-\ln 2}{2}, \frac{-\ln 3}{\sqrt{6}}, \frac{-\ln 2}{\sqrt{2}}, \frac{-\ln 5}{\sqrt{10}}. The sequence converges to 00.

Related problems in "Analysis"

The problem asks to determine the convergence or divergence of four series using the Limit Compariso...

SeriesConvergenceDivergenceLimit Comparison Test
2025/5/27

We are asked to evaluate the limit $$ \lim_{x\to 0} \frac{(1 - \cos x)^2}{\tan^3 x - \sin^3 x} $$

LimitsTrigonometryL'Hopital's RuleCalculus
2025/5/27

We are asked to evaluate the limit: $\lim_{x \to +\infty} x^2 (1 - \cos(\frac{1}{x}))$

LimitsTrigonometryCalculusL'Hopital's Rule (Implicitly)Series Expansion (Implicitly)
2025/5/27

We need to find the limit of the given expression as $x$ approaches 0: $$ \lim_{x \to 0} \frac{\sqrt...

LimitsTrigonometryL'Hôpital's Rule (Implicitly)Rationalization
2025/5/27

We are asked to evaluate the limit: $\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1+\cos x}}{\sin^2 x}$

LimitsTrigonometryL'Hôpital's Rule (Implicit)RationalizationCalculus
2025/5/27

The problem asks to determine whether the given series converges or diverges. If a series converges,...

SeriesConvergenceDivergenceGeometric SeriesTelescoping SeriesHarmonic SeriesRatio TestPartial Fraction Decomposition
2025/5/27

We need to determine whether the given series converge or diverge. If they converge, we need to find...

SeriesConvergenceDivergenceGeometric SeriesTelescoping SeriesDivergence Test
2025/5/27

The problem presents a sequence: $\sin 1, 2 \sin \frac{1}{2}, 3 \sin \frac{1}{3}, 4 \sin \frac{1}{4}...

SequencesLimitsTrigonometry
2025/5/27

The problem asks us to find an explicit formula $a_n$ for the given sequence, determine whether the ...

SequencesLimitsConvergenceExplicit Formula
2025/5/27

The problem asks us to analyze the sequence $a_n = e^{-n} \sin n$. We need to find the first few ter...

SequencesLimitsConvergenceSqueeze TheoremTrigonometric FunctionsExponential Functions
2025/5/27