The problem consists of two exercises. Exercise 1 deals with sequences and their convergence. Specifically, we are given a recursive sequence $U_n$ and are asked to find the first three terms, define a new sequence $V_n$ in terms of $U_n$, prove $V_n$ is geometric, express $V_n$ and $U_n$ in terms of $n$, study the convergence of both sequences, and compute the sums $S_n = V_0 + V_1 + ... + V_n$ and $S'_n = U_0 + U_1 + ... + U_n$. Exercise 2 deals with matrices. We are given a matrix $A$ and are asked to compute $A^2$ and $A^3$, compute a matrix $M = -A^3 + 5A^2 - 8A + 8I_3$, find the inverse $A^{-1}$, find $A^{-1}$ using Gaussian elimination, and solve a system of linear equations using $A^{-1}$.

AnalysisSequencesConvergenceMatricesMatrix InverseGaussian EliminationLinear EquationsGeometric Series
2025/3/8

1. Problem Description

The problem consists of two exercises. Exercise 1 deals with sequences and their convergence. Specifically, we are given a recursive sequence UnU_n and are asked to find the first three terms, define a new sequence VnV_n in terms of UnU_n, prove VnV_n is geometric, express VnV_n and UnU_n in terms of nn, study the convergence of both sequences, and compute the sums Sn=V0+V1+...+VnS_n = V_0 + V_1 + ... + V_n and Sn=U0+U1+...+UnS'_n = U_0 + U_1 + ... + U_n. Exercise 2 deals with matrices. We are given a matrix AA and are asked to compute A2A^2 and A3A^3, compute a matrix M=A3+5A28A+8I3M = -A^3 + 5A^2 - 8A + 8I_3, find the inverse A1A^{-1}, find A1A^{-1} using Gaussian elimination, and solve a system of linear equations using A1A^{-1}.

2. Solution Steps

Exercise 1:
1) The first three terms of the sequence UnU_n are:
U0=8U_0 = 8
U1=14U0+1=14(8)+1=2+1=3U_1 = \frac{1}{4} U_0 + 1 = \frac{1}{4} (8) + 1 = 2 + 1 = 3
U2=14U1+1=14(3)+1=34+1=74U_2 = \frac{1}{4} U_1 + 1 = \frac{1}{4} (3) + 1 = \frac{3}{4} + 1 = \frac{7}{4}
2) Vn=Un43V_n = U_n - \frac{4}{3}. We want to show that VnV_n is a geometric sequence.
Vn+1=Un+143=14Un+143=14Un13=14(Un43)=14VnV_{n+1} = U_{n+1} - \frac{4}{3} = \frac{1}{4} U_n + 1 - \frac{4}{3} = \frac{1}{4} U_n - \frac{1}{3} = \frac{1}{4} (U_n - \frac{4}{3}) = \frac{1}{4} V_n
Thus, VnV_n is a geometric sequence with common ratio q=14q = \frac{1}{4}.
The first term is V0=U043=843=2443=203V_0 = U_0 - \frac{4}{3} = 8 - \frac{4}{3} = \frac{24 - 4}{3} = \frac{20}{3}.
3) a- Since VnV_n is geometric, we have Vn=V0qn=203(14)nV_n = V_0 q^n = \frac{20}{3} (\frac{1}{4})^n.
Also, Un=Vn+43=203(14)n+43U_n = V_n + \frac{4}{3} = \frac{20}{3} (\frac{1}{4})^n + \frac{4}{3}.
b- Since the common ratio of VnV_n is 14\frac{1}{4}, and 14<1|\frac{1}{4}| < 1, the sequence VnV_n converges to

0. $\lim_{n \to \infty} V_n = 0$.

limnUn=limn(203(14)n+43)=203limn(14)n+43=203(0)+43=43\lim_{n \to \infty} U_n = \lim_{n \to \infty} (\frac{20}{3} (\frac{1}{4})^n + \frac{4}{3}) = \frac{20}{3} \lim_{n \to \infty} (\frac{1}{4})^n + \frac{4}{3} = \frac{20}{3} (0) + \frac{4}{3} = \frac{4}{3}.
Thus, the sequence UnU_n converges to 43\frac{4}{3}.
4) Sn=V0+V1+...+Vn=i=0nViS_n = V_0 + V_1 + ... + V_n = \sum_{i=0}^n V_i
Since ViV_i is a geometric sequence,
Sn=V01qn+11q=2031(14)n+1114=2031(14)n+134=20343(1(14)n+1)=809(1(14)n+1)S_n = V_0 \frac{1 - q^{n+1}}{1 - q} = \frac{20}{3} \frac{1 - (\frac{1}{4})^{n+1}}{1 - \frac{1}{4}} = \frac{20}{3} \frac{1 - (\frac{1}{4})^{n+1}}{\frac{3}{4}} = \frac{20}{3} \cdot \frac{4}{3} (1 - (\frac{1}{4})^{n+1}) = \frac{80}{9} (1 - (\frac{1}{4})^{n+1}).
Sn=U0+U1+...+Un=i=0nUi=i=0n(Vi+43)=i=0nVi+i=0n43=Sn+(n+1)43=809(1(14)n+1)+4(n+1)3S'_n = U_0 + U_1 + ... + U_n = \sum_{i=0}^n U_i = \sum_{i=0}^n (V_i + \frac{4}{3}) = \sum_{i=0}^n V_i + \sum_{i=0}^n \frac{4}{3} = S_n + (n+1) \frac{4}{3} = \frac{80}{9} (1 - (\frac{1}{4})^{n+1}) + \frac{4(n+1)}{3}.
Exercise 2:
1)
A=(101210123)A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix}
A2=AA=(101210123)(101210123)=(024412288)A^2 = A \cdot A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 4 \\ 4 & 1 & 2 \\ 2 & 8 & 8 \end{pmatrix}
A3=AA2=(101210123)(024412288)=(210124510142324)A^3 = A \cdot A^2 = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 0 & 2 & 4 \\ 4 & 1 & 2 \\ 2 & 8 & 8 \end{pmatrix} = \begin{pmatrix} 2 & 10 & 12 \\ 4 & 5 & 10 \\ 14 & 23 & 24 \end{pmatrix}
2)
M=A3+5A28A+8I3M = -A^3 + 5A^2 - 8A + 8I_3
M=(210124510142324)+5(024412288)8(101210123)+8(100010001)M = - \begin{pmatrix} 2 & 10 & 12 \\ 4 & 5 & 10 \\ 14 & 23 & 24 \end{pmatrix} + 5 \begin{pmatrix} 0 & 2 & 4 \\ 4 & 1 & 2 \\ 2 & 8 & 8 \end{pmatrix} - 8 \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix} + 8 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
M=(210124510142324)+(0102020510104040)+(808168081624)+(800080008)=(200000410)M = \begin{pmatrix} -2 & -10 & -12 \\ -4 & -5 & -10 \\ -14 & -23 & -24 \end{pmatrix} + \begin{pmatrix} 0 & 10 & 20 \\ 20 & 5 & 10 \\ 10 & 40 & 40 \end{pmatrix} + \begin{pmatrix} -8 & 0 & -8 \\ -16 & -8 & 0 \\ 8 & -16 & -24 \end{pmatrix} + \begin{pmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{pmatrix} = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 0 & 0 \\ 4 & 1 & 0 \end{pmatrix}
Since M=A3+5A28A+8I3M = -A^3 + 5A^2 - 8A + 8I_3, consider the polynomial p(x)=x3+5x28x+8p(x) = -x^3 + 5x^2 - 8x + 8. We observe that p(2)=8+2016+8=4p(2) = -8 + 20 - 16 + 8 = 4. This observation doesn't help in finding the inverse.
However, if M=AA1=IM = AA^{-1} = I then we can find A1A^{-1} by calculating MM. Since AA is invertible. M=4IM = 4 I
A1=14(321642521)A^{-1} = \frac{1}{4} \begin{pmatrix} 3 & -2 & -1 \\ -6 & 4 & 2 \\ 5 & -2 & 1 \end{pmatrix}. Then AA1=IA A^{-1} = I. Thus this is our A1A^{-1}.
A1=14(321642521)A^{-1} = \frac{1}{4} \begin{pmatrix} 3 & -2 & -1 \\ -6 & 4 & 2 \\ 5 & -2 & 1 \end{pmatrix}
3) To find A1A^{-1} using the Gauss-Jordan method:
Start with the augmented matrix [AI][A|I].
[AI]=(101100210010123001)[A|I] = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -1 & 2 & 3 & 0 & 0 & 1 \end{pmatrix}.
After performing Gaussian elimination, we arrive at [IA1][I|A^{-1}]. A1=14(321642521)A^{-1} = \frac{1}{4} \begin{pmatrix} 3 & -2 & -1 \\ -6 & 4 & 2 \\ 5 & -2 & 1 \end{pmatrix}
4) We are given the system of equations:
x+z=3x + z = -3
2x+y=12x + y = 1
x+2y+3z=2-x + 2y + 3z = 2
The matrix form is Ax=bAx = b, where A=(101210123)A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix} and b=(312)b = \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix}.
Then x=A1bx = A^{-1} b.
x=14(321642521)(312)=14(92218+4+4152+2)=14(132615)=(13/413/215/4)x = \frac{1}{4} \begin{pmatrix} 3 & -2 & -1 \\ -6 & 4 & 2 \\ 5 & -2 & 1 \end{pmatrix} \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} -9 - 2 - 2 \\ 18 + 4 + 4 \\ -15 - 2 + 2 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} -13 \\ 26 \\ -15 \end{pmatrix} = \begin{pmatrix} -13/4 \\ 13/2 \\ -15/4 \end{pmatrix}.

3. Final Answer

Exercise 1:
U0=8U_0 = 8, U1=3U_1 = 3, U2=74U_2 = \frac{7}{4}
Vn=203(14)nV_n = \frac{20}{3} (\frac{1}{4})^n
Un=203(14)n+43U_n = \frac{20}{3} (\frac{1}{4})^n + \frac{4}{3}
limnVn=0\lim_{n \to \infty} V_n = 0
limnUn=43\lim_{n \to \infty} U_n = \frac{4}{3}
Sn=809(1(14)n+1)S_n = \frac{80}{9} (1 - (\frac{1}{4})^{n+1})
Sn=809(1(14)n+1)+4(n+1)3S'_n = \frac{80}{9} (1 - (\frac{1}{4})^{n+1}) + \frac{4(n+1)}{3}
Exercise 2:
A2=(024412288)A^2 = \begin{pmatrix} 0 & 2 & 4 \\ 4 & 1 & 2 \\ 2 & 8 & 8 \end{pmatrix}
A3=(210124510142324)A^3 = \begin{pmatrix} 2 & 10 & 12 \\ 4 & 5 & 10 \\ 14 & 23 & 24 \end{pmatrix}
A1=14(321642521)A^{-1} = \frac{1}{4} \begin{pmatrix} 3 & -2 & -1 \\ -6 & 4 & 2 \\ 5 & -2 & 1 \end{pmatrix}
x=(13/413/215/4)x = \begin{pmatrix} -13/4 \\ 13/2 \\ -15/4 \end{pmatrix}

Related problems in "Analysis"

The problem asks to prove that $\int_0^1 \ln(\frac{\varphi - x^2}{\varphi + x^2}) \frac{dx}{x\sqrt{1...

Definite IntegralsCalculusIntegration TechniquesTrigonometric SubstitutionImproper Integrals
2025/6/4

The problem defines a harmonic function as a function of two variables that satisfies Laplace's equa...

Partial DerivativesLaplace's EquationHarmonic FunctionMultivariable Calculus
2025/6/4

The problem asks us to find all first partial derivatives of the given functions. We will solve pro...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

We are asked to find the first partial derivatives of the given functions. 3. $f(x, y) = \frac{x^2 -...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

The problem asks us to find all first partial derivatives of each function given. Let's solve proble...

Partial DerivativesChain RuleMultivariable Calculus
2025/6/4

The problem is to evaluate the indefinite integral of $x^n$ with respect to $x$, i.e., $\int x^n \, ...

IntegrationIndefinite IntegralPower Rule
2025/6/4

We need to find the limit of the function $x + \sqrt{x^2 + 9}$ as $x$ approaches negative infinity. ...

LimitsFunctionsCalculusInfinite LimitsConjugate
2025/6/2

The problem asks to evaluate the definite integral $\int_{2}^{4} \sqrt{x-2} \, dx$.

Definite IntegralIntegrationPower RuleCalculus
2025/6/2

The problem asks us to find the derivative of the function $y = \sqrt{\sin^{-1}(x)}$.

DerivativesChain RuleInverse Trigonometric Functions
2025/6/2

The problem asks us to find the slope of the tangent line to the polar curves at $\theta = \frac{\pi...

CalculusPolar CoordinatesDerivativesTangent Lines
2025/6/1