次の和を求める問題です。 (1) $\sum_{k=1}^{n}(k^2 + 2k)$ (2) $\sum_{k=1}^{n}(3k^2 - k + 2)$代数学数列シグマ計算2025/5/281. 問題の内容次の和を求める問題です。(1) ∑k=1n(k2+2k)\sum_{k=1}^{n}(k^2 + 2k)∑k=1n(k2+2k)(2) ∑k=1n(3k2−k+2)\sum_{k=1}^{n}(3k^2 - k + 2)∑k=1n(3k2−k+2)2. 解き方の手順(1) ∑k=1n(k2+2k)\sum_{k=1}^{n}(k^2 + 2k)∑k=1n(k2+2k) を計算します。∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n}k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk=n(n+1)2\sum_{k=1}^{n}k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)であるから∑k=1n(k2+2k)=∑k=1nk2+2∑k=1nk=n(n+1)(2n+1)6+2n(n+1)2=n(n+1)(2n+1)6+n(n+1)\sum_{k=1}^{n}(k^2 + 2k) = \sum_{k=1}^{n}k^2 + 2\sum_{k=1}^{n}k = \frac{n(n+1)(2n+1)}{6} + 2\frac{n(n+1)}{2} = \frac{n(n+1)(2n+1)}{6} + n(n+1)∑k=1n(k2+2k)=∑k=1nk2+2∑k=1nk=6n(n+1)(2n+1)+22n(n+1)=6n(n+1)(2n+1)+n(n+1)=n(n+1)(2n+1)+6n(n+1)6=n(n+1)(2n+1+6)6=n(n+1)(2n+7)6= \frac{n(n+1)(2n+1) + 6n(n+1)}{6} = \frac{n(n+1)(2n+1+6)}{6} = \frac{n(n+1)(2n+7)}{6}=6n(n+1)(2n+1)+6n(n+1)=6n(n+1)(2n+1+6)=6n(n+1)(2n+7)(2) ∑k=1n(3k2−k+2)\sum_{k=1}^{n}(3k^2 - k + 2)∑k=1n(3k2−k+2) を計算します。∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n}k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk=n(n+1)2\sum_{k=1}^{n}k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1n1=n\sum_{k=1}^{n}1 = n∑k=1n1=nであるから∑k=1n(3k2−k+2)=3∑k=1nk2−∑k=1nk+2∑k=1n1=3n(n+1)(2n+1)6−n(n+1)2+2n\sum_{k=1}^{n}(3k^2 - k + 2) = 3\sum_{k=1}^{n}k^2 - \sum_{k=1}^{n}k + 2\sum_{k=1}^{n}1 = 3\frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2} + 2n∑k=1n(3k2−k+2)=3∑k=1nk2−∑k=1nk+2∑k=1n1=36n(n+1)(2n+1)−2n(n+1)+2n=n(n+1)(2n+1)2−n(n+1)2+2n=n(n+1)(2n+1)−n(n+1)+4n2=n[(n+1)(2n+1)−(n+1)+4]2= \frac{n(n+1)(2n+1)}{2} - \frac{n(n+1)}{2} + 2n = \frac{n(n+1)(2n+1) - n(n+1) + 4n}{2} = \frac{n[(n+1)(2n+1) - (n+1) + 4]}{2}=2n(n+1)(2n+1)−2n(n+1)+2n=2n(n+1)(2n+1)−n(n+1)+4n=2n[(n+1)(2n+1)−(n+1)+4]=n[2n2+3n+1−n−1+4]2=n[2n2+2n+4]2=2n[n2+n+2]2=n(n2+n+2)= \frac{n[2n^2+3n+1 - n - 1 + 4]}{2} = \frac{n[2n^2+2n+4]}{2} = \frac{2n[n^2+n+2]}{2} = n(n^2+n+2)=2n[2n2+3n+1−n−1+4]=2n[2n2+2n+4]=22n[n2+n+2]=n(n2+n+2)3. 最終的な答え(1) n(n+1)(2n+7)6\frac{n(n+1)(2n+7)}{6}6n(n+1)(2n+7)(2) n(n2+n+2)n(n^2+n+2)n(n2+n+2)