次の和を求める問題です。 (1) $\sum_{k=1}^{n}(k^2 + 2k)$ (2) $\sum_{k=1}^{n}(3k^2 - k + 2)$

代数学数列シグマ計算
2025/5/28

1. 問題の内容

次の和を求める問題です。
(1) k=1n(k2+2k)\sum_{k=1}^{n}(k^2 + 2k)
(2) k=1n(3k2k+2)\sum_{k=1}^{n}(3k^2 - k + 2)

2. 解き方の手順

(1) k=1n(k2+2k)\sum_{k=1}^{n}(k^2 + 2k) を計算します。
k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n}k^2 = \frac{n(n+1)(2n+1)}{6}
k=1nk=n(n+1)2\sum_{k=1}^{n}k = \frac{n(n+1)}{2}
であるから
k=1n(k2+2k)=k=1nk2+2k=1nk=n(n+1)(2n+1)6+2n(n+1)2=n(n+1)(2n+1)6+n(n+1)\sum_{k=1}^{n}(k^2 + 2k) = \sum_{k=1}^{n}k^2 + 2\sum_{k=1}^{n}k = \frac{n(n+1)(2n+1)}{6} + 2\frac{n(n+1)}{2} = \frac{n(n+1)(2n+1)}{6} + n(n+1)
=n(n+1)(2n+1)+6n(n+1)6=n(n+1)(2n+1+6)6=n(n+1)(2n+7)6= \frac{n(n+1)(2n+1) + 6n(n+1)}{6} = \frac{n(n+1)(2n+1+6)}{6} = \frac{n(n+1)(2n+7)}{6}
(2) k=1n(3k2k+2)\sum_{k=1}^{n}(3k^2 - k + 2) を計算します。
k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n}k^2 = \frac{n(n+1)(2n+1)}{6}
k=1nk=n(n+1)2\sum_{k=1}^{n}k = \frac{n(n+1)}{2}
k=1n1=n\sum_{k=1}^{n}1 = n
であるから
k=1n(3k2k+2)=3k=1nk2k=1nk+2k=1n1=3n(n+1)(2n+1)6n(n+1)2+2n\sum_{k=1}^{n}(3k^2 - k + 2) = 3\sum_{k=1}^{n}k^2 - \sum_{k=1}^{n}k + 2\sum_{k=1}^{n}1 = 3\frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2} + 2n
=n(n+1)(2n+1)2n(n+1)2+2n=n(n+1)(2n+1)n(n+1)+4n2=n[(n+1)(2n+1)(n+1)+4]2= \frac{n(n+1)(2n+1)}{2} - \frac{n(n+1)}{2} + 2n = \frac{n(n+1)(2n+1) - n(n+1) + 4n}{2} = \frac{n[(n+1)(2n+1) - (n+1) + 4]}{2}
=n[2n2+3n+1n1+4]2=n[2n2+2n+4]2=2n[n2+n+2]2=n(n2+n+2)= \frac{n[2n^2+3n+1 - n - 1 + 4]}{2} = \frac{n[2n^2+2n+4]}{2} = \frac{2n[n^2+n+2]}{2} = n(n^2+n+2)

3. 最終的な答え

(1) n(n+1)(2n+7)6\frac{n(n+1)(2n+7)}{6}
(2) n(n2+n+2)n(n^2+n+2)