次の式の分母を有理化する問題です。 (1) $\frac{2}{\sqrt{3}}$ (2) $\frac{4}{\sqrt{2}}$ (3) $\frac{\sqrt{3}}{\sqrt{2}}$ (4) $\frac{1}{2\sqrt{5}}$

算数分母の有理化平方根計算
2025/5/29

1. 問題の内容

次の式の分母を有理化する問題です。
(1) 23\frac{2}{\sqrt{3}}
(2) 42\frac{4}{\sqrt{2}}
(3) 32\frac{\sqrt{3}}{\sqrt{2}}
(4) 125\frac{1}{2\sqrt{5}}

2. 解き方の手順

分母を有理化するには、分母と分子に同じ数を掛けます。分母の根号を消すように掛け算する数を決めることがポイントです。
(1) 23\frac{2}{\sqrt{3}} の場合
分母が 3\sqrt{3} なので、分母と分子に 3\sqrt{3} を掛けます。
23=2×33×3=233\frac{2}{\sqrt{3}} = \frac{2 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{2\sqrt{3}}{3}
(2) 42\frac{4}{\sqrt{2}} の場合
分母が 2\sqrt{2} なので、分母と分子に 2\sqrt{2} を掛けます。
42=4×22×2=422=22\frac{4}{\sqrt{2}} = \frac{4 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{4\sqrt{2}}{2} = 2\sqrt{2}
(3) 32\frac{\sqrt{3}}{\sqrt{2}} の場合
分母が 2\sqrt{2} なので、分母と分子に 2\sqrt{2} を掛けます。
32=3×22×2=62\frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{3} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{6}}{2}
(4) 125\frac{1}{2\sqrt{5}} の場合
分母が 252\sqrt{5} なので、分母と分子に 5\sqrt{5} を掛けます。
125=1×525×5=52×5=510\frac{1}{2\sqrt{5}} = \frac{1 \times \sqrt{5}}{2\sqrt{5} \times \sqrt{5}} = \frac{\sqrt{5}}{2 \times 5} = \frac{\sqrt{5}}{10}

3. 最終的な答え

(1) 233\frac{2\sqrt{3}}{3}
(2) 222\sqrt{2}
(3) 62\frac{\sqrt{6}}{2}
(4) 510\frac{\sqrt{5}}{10}

「算数」の関連問題

数直線上の2点A(-2)とB(-5)の距離を求める問題です。

数直線距離絶対値
2025/5/30

10円硬貨3枚、50円硬貨3枚、100円硬貨3枚の一部または全部を使って、ちょうど支払うことのできる金額は何通りあるかを求める問題です。

組み合わせ場合の数硬貨
2025/5/30

与えられた8つの計算問題を解きます。 (1) $(+2) \times (+6)$ (2) $(-9) \times (+4)$ (3) $(+8) \times (-3)$ (4) $(-7) \t...

四則演算正負の数分数
2025/5/30

与えられた数 $0, -1, -0.7, -\frac{2}{3}, -\frac{4}{5}$ を小さい順に並べ替える問題です。

数の比較分数小数大小関係
2025/5/30

画像に掲載されている4つの計算問題を解く。 (1) $(-9) + (+2) - (-5)$ (2) $(-3) - (-8) - (+6)$ (3) $11 - 17 + 14 - 13$ (4) ...

四則演算負の数計算
2025/5/30

画像に示された8つの計算問題を解きます。

四則演算負の数分数加減算
2025/5/30

与えられた問題は $(-1.5) + (-3.8)$ を計算することです。

四則演算負の数足し算
2025/5/30

与えられた数式 $3 \div \frac{3}{5} + 1\frac{7}{24}$ を計算し、答えを求める。

分数四則演算計算
2025/5/30

与えられた3つの式(重根号を含む)を簡単にします。 (1) $\sqrt{7+2\sqrt{10}}$ (2) $\sqrt{12-6\sqrt{3}}$ (3) $\sqrt{2-\sqrt{3}}...

平方根根号重根号
2025/5/30

(1) $\sqrt{24n}$ の値が自然数となるような、最も小さい自然数 $n$ の値を求めなさい。 (2) $\sqrt{54n}$ の値が自然数となるような、最も小さい自然数 $n$ の値を求...

平方根自然数根号
2025/5/30