与えられた3つの式(重根号を含む)を簡単にします。 (1) $\sqrt{7+2\sqrt{10}}$ (2) $\sqrt{12-6\sqrt{3}}$ (3) $\sqrt{2-\sqrt{3}}$

算数平方根根号重根号
2025/5/30

1. 問題の内容

与えられた3つの式(重根号を含む)を簡単にします。
(1) 7+210\sqrt{7+2\sqrt{10}}
(2) 1263\sqrt{12-6\sqrt{3}}
(3) 23\sqrt{2-\sqrt{3}}

2. 解き方の手順

(1) 7+210\sqrt{7+2\sqrt{10}}
重根号の外し方の公式: a+b+2ab=a+b\sqrt{a+b+2\sqrt{ab}} = \sqrt{a}+\sqrt{b} を利用します。
7+2107+2\sqrt{10}a+b+2aba+b+2\sqrt{ab} の形に変形します。
a+b=7a+b = 7, ab=10ab = 10 となる a,ba, b を探します。
a=5,b=2a=5, b=2 が条件を満たすことがわかります。
したがって、
7+210=5+2+252=(5+2)2=5+2\sqrt{7+2\sqrt{10}} = \sqrt{5+2+2\sqrt{5 \cdot 2}} = \sqrt{(\sqrt{5}+\sqrt{2})^2} = \sqrt{5}+\sqrt{2}
(2) 1263\sqrt{12-6\sqrt{3}}
1263=12227\sqrt{12-6\sqrt{3}} = \sqrt{12-2\sqrt{27}}
a+b=12a+b = 12, ab=27ab = 27 となる a,ba, b を探します。
a=9,b=3a=9, b=3 が条件を満たすことがわかります。
したがって、
12227=9+3293=(93)2=(33)2=33\sqrt{12-2\sqrt{27}} = \sqrt{9+3-2\sqrt{9 \cdot 3}} = \sqrt{(\sqrt{9}-\sqrt{3})^2} = \sqrt{(3-\sqrt{3})^2} = 3-\sqrt{3}
(3) 23\sqrt{2-\sqrt{3}}
23\sqrt{2-\sqrt{3}}
23=4232=4232\sqrt{2-\sqrt{3}} = \sqrt{\frac{4-2\sqrt{3}}{2}} = \frac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}
a+b=4a+b = 4, ab=3ab = 3 となる a,ba, b を探します。
a=3,b=1a=3, b=1 が条件を満たすことがわかります。
したがって、
4232=3+12312=(31)22=312\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}} = \frac{\sqrt{3+1-2\sqrt{3 \cdot 1}}}{\sqrt{2}} = \frac{\sqrt{(\sqrt{3}-1)^2}}{\sqrt{2}} = \frac{\sqrt{3}-1}{\sqrt{2}}
分母の有理化を行います。
312=(31)222=622\frac{\sqrt{3}-1}{\sqrt{2}} = \frac{(\sqrt{3}-1)\sqrt{2}}{\sqrt{2}\sqrt{2}} = \frac{\sqrt{6}-\sqrt{2}}{2}

3. 最終的な答え

(1) 5+2\sqrt{5}+\sqrt{2}
(2) 333-\sqrt{3}
(3) 622\frac{\sqrt{6}-\sqrt{2}}{2}

「算数」の関連問題

直方体と四角柱の表面積を求める問題です。ここでは直方体の表面積を求める問題を解きます。直方体の各辺の長さは、6cm、5cm、8cmです。

表面積直方体図形
2025/5/31

定価100円の商品がある。A店では12%引きで販売されている。B店では10個までは定価で、10個を超える分は25%引きで販売されている。A店よりB店で購入する方が安くなるのは、何個以上購入する場合か。

割合文章問題不等式価格計算
2025/5/31

A, B, C, D, Eの5人がゲームをした。5人の平均点は67点だった。表はある得点を基準として、それより高い場合を正の数、低い場合を負の数で表したものである。基準にした得点を求める。

平均計算
2025/5/31

2023 = 7 * 17 * 17 である。2023を割り切ることができる自然数の中で、2023の次に大きな自然数を求めよ。

約数素因数分解平方数
2025/5/31

問題2:絶対値が $\frac{7}{3}$ より小さい整数をすべて答えなさい。 問題3:次のア~ウのうち、2つの自然数$\bigcirc$, $\Box$ を用いた計算の結果が、自然数になるとは限ら...

絶対値整数自然数四則演算
2025/5/31

次の3つの計算問題を解きます。 (1) $3.4 - (-2.5)$ (2) $-\frac{3}{4} \times \frac{2}{15}$ (3) $(-\frac{4}{3})^2 \div...

四則演算分数小数
2025/5/31

以下の3つの計算問題を解く。 (4) $-2 \times 6 + (-18) \div 9$ (5) $8 \div (-2) - (-3) \times (-4)$ (6) $-5 - 14 \d...

四則演算計算
2025/5/31

画像に記載されている3つの計算問題を解きます。 (1) $4 + 7 \times (-3)$ (2) $9 - 2 \times (-5)$ (3) $1 + (-15) \div 5$

四則演算計算負の数計算の順序
2025/5/31

以下の3つの計算問題を解きます。 (1) $(-4)^2$ (2) $-4^2$ (3) $(-5)^2 \times (-2^2)$

四則演算累乗負の数
2025/5/31

問題は、引き算の中に負の数が含まれている計算を正しく行う方法を学ぶことです。具体的には、4 - 2 - (-5) という計算を、間違った例と比較しながら、正しい手順で計算し、空欄を埋める問題です。さら...

負の数引き算計算
2025/5/31