ボールを高さ20の位置から45°または30°の方向に発射したとき、地面に落下するまでの水平距離を求める問題。45°で発射した場合の水平距離は ケコ$\sqrt{\text{サ}}$、30°で発射した場合の水平距離は シス$\sqrt{\text{セ}}$。さらに、これらの結果からどちらの角度で発射した方が水平距離が長いか判断する。

応用数学放物運動物理水平距離三角関数
2025/6/1

1. 問題の内容

ボールを高さ20の位置から45°または30°の方向に発射したとき、地面に落下するまでの水平距離を求める問題。45°で発射した場合の水平距離は ケコ\sqrt{\text{サ}}、30°で発射した場合の水平距離は シス\sqrt{\text{セ}}。さらに、これらの結果からどちらの角度で発射した方が水平距離が長いか判断する。

2. 解き方の手順

問題文に具体的な数値が与えられていないため、変数を用いた一般的な放物運動の知識が必要になると思われる。しかし、画像の情報からそれ以上のことが読み取れないため、問題を解くことができない。

3. 最終的な答え

問題を解くために必要な情報が不足しています。

「応用数学」の関連問題

この問題は、効用最大化問題を解くものです。所得$m$、x財の価格$p_x$、y財の価格$p_y$が与えられたとき、それぞれの効用関数$u(x,y)$のもとで、最適な消費計画$(x, y)$を求める問題...

効用最大化ラグランジュ乗数法経済学偏微分
2025/6/6

効用関数 $u(x, y) = xy$ のもとで、x財の価格が $p_x > 0$、y財の価格が $p_y > 0$、所得が $m > 0$ であるときの最適消費プラン (x, y) を求める問題です...

最適化効用関数ラグランジュ乗数法経済学
2025/6/6

$L(x, y, \lambda) = x^\alpha y^{1-\alpha} + \lambda(M - p_x x - p_y y)$ ここで $\lambda$ はラグランジュ乗数で...

経済学ミクロ経済学効用関数需要関数ラグランジュ乗数
2025/6/6

与えられた制約条件の下で、関数を最大化する最適化問題を解きます。 (1) $\max_{x,y} xy$ subject to $x+y-2=0$ (2) $\max_{x,y} x^3y^2$ su...

最適化制約付き最適化ラグランジュの未定乗数法微分最大値
2025/6/6

(1) 制約条件 $x + y - 2 = 0$ の下で、$xy$ を最大化する問題。 (2) 制約条件 $x + 2y - 10 = 0$ の下で、$x^3y^2$ を最大化する問題。

最大化制約条件微分最適化ラグランジュの未定乗数法
2025/6/6

地球と太陽の距離が $1.5 \times 10^{11} \mathrm{m}$ であり、光の速度が $3.0 \times 10^{8} \mathrm{m/s}$ であるとき、光が太陽から地球ま...

物理距離速度時間指数
2025/6/6

直径 $d=40 \text{ mm}$、長さ $l=80 \text{ cm}$ の低炭素鋼の円形断面軸の一端が固定されている。軸の先端にトルク $T$、中央にトルク $2T$ が作用している。軸端...

材料力学ねじりトルク断面二次極モーメント不等式
2025/6/6

長さ $l$ の糸におもり(質量 $m$)がついており、水平面内で等速円運動をしています。糸と鉛直方向のなす角を $\theta$、重力加速度の大きさを $g$ とします。 (1) 糸の張力 $S$ ...

物理力学円運動ベクトル三角関数
2025/6/6

与えられた不等式 $-1.96 \le \frac{x-\mu}{\sigma} \le 1.96$ を変形し、$x$ を用いて $\mu$ の範囲を求める問題です。

不等式統計区間推定
2025/6/6

長さ $l$ の糸におもり(質量 $m$)がついており、水平面内で等速円運動をしている。糸と鉛直方向のなす角は $\theta$、重力加速度は $g$ である。以下のものを求める。 (1) 糸の張力 ...

力学円運動物理ベクトル三角関数
2025/6/6