地球と太陽の距離が $1.5 \times 10^{11} \mathrm{m}$ であり、光の速度が $3.0 \times 10^{8} \mathrm{m/s}$ であるとき、光が太陽から地球まで到達するのにかかる時間を秒で求めよ。

応用数学物理距離速度時間指数
2025/6/6

1. 問題の内容

地球と太陽の距離が 1.5×1011m1.5 \times 10^{11} \mathrm{m} であり、光の速度が 3.0×108m/s3.0 \times 10^{8} \mathrm{m/s} であるとき、光が太陽から地球まで到達するのにかかる時間を秒で求めよ。

2. 解き方の手順

時間、距離、速度の関係は次の式で表されます。
時間 = 距離 / 速度
この式に、与えられた距離と速度の値を代入します。
時間 =1.5×1011m3.0×108m/s= \frac{1.5 \times 10^{11} \mathrm{m}}{3.0 \times 10^{8} \mathrm{m/s}}
時間の計算を行います。
時間 =1.53.0×1011108s= \frac{1.5}{3.0} \times \frac{10^{11}}{10^{8}} \mathrm{s}
時間 =0.5×10118s= 0.5 \times 10^{11-8} \mathrm{s}
時間 =0.5×103s= 0.5 \times 10^{3} \mathrm{s}
時間 =500s= 500 \mathrm{s}

3. 最終的な答え

500秒

「応用数学」の関連問題

金属材料の抵抗率が与えられたとき、ヴィーデマン・フランツの法則を用いて、室温における熱伝導度を求める。

物理熱伝導電気抵抗ヴィーデマン・フランツの法則計算
2025/6/6

室温(300 K)におけるある金属材料の抵抗率が $1.7 \times 10^{-8} \ \Omega \cdot \text{m}$ であるとき、ヴィーデマン・フランツの法則を用いて、室温におけ...

物理熱伝導ヴィーデマン・フランツの法則電気抵抗率ローレンツ数
2025/6/6

Sを発射位置として、水平方向から45°の方向にボールを発射した場合と、30°の方向にボールを発射した場合の水平距離を比較し、その結果から言えることを選択肢から選ぶ問題です。

力学物理放物運動三角関数
2025/6/6

等温等積条件で平衡状態にある液体と気体の化学ポテンシャル$\mu_L$と$\mu_G$の関係を求める問題です。 ラグランジュの未定乗数法を使用します。

化学熱力学化学ポテンシャルラグランジュの未定乗数法
2025/6/6

等温等積条件で平衡状態にある液体と気体について、それぞれの化学ポテンシャル$\mu_L$と$\mu_G$の関係を求める問題です。

熱力学化学ポテンシャル相平衡ギブズエネルギー
2025/6/6

等温等積条件で平衡状態にある液体と気体について、それぞれの化学ポテンシャル $\mu_L$(液体)と $\mu_G$(気体)の間の関係を求める問題です。

熱力学化学ポテンシャル平衡状態ギブズエネルギー
2025/6/6

直径 $d = 30 \text{ mm}$、長さ $l = 500 \text{ mm}$ の円形断面軸の一端が固定されており、軸の中央から先端にかけて単位長さあたり $\tau = 300 \te...

材料力学ねじり積分断面二次極モーメント横弾性係数
2025/6/6

ベクトル $\mathbf{A} = \mathbf{i} + \mathbf{j} + 3\mathbf{k}$, $\mathbf{B} = \mathbf{i} - 2\mathbf{j} + ...

ベクトルベクトルの内積ベクトルの外積ラプラシアン
2025/6/6

直径 $d = 20 \text{ mm}$、長さ $l = 400 \text{ mm}$ の円形断面軸の一端が壁に固定されている。軸端に $T = 300 \text{ Nm}$ のトルクを作用さ...

力学材料力学ねじりトルク極断面二次モーメント横弾性係数単位変換
2025/6/6

ある船が川を $60 km$ 上るのに $5$ 時間、下るのに $3$ 時間かかった。このとき、以下の2つの問いに答える。 (1) この船の静水時の速さを求めなさい。 (2) この川の流れの速さを求め...

速度距離連立方程式文章問題
2025/6/6