We are asked to evaluate the infinite sum $\sum_{k=1}^{\infty} \frac{2}{(k+2)k}$.

AnalysisInfinite SeriesTelescoping SeriesPartial Fraction Decomposition
2025/3/6

1. Problem Description

We are asked to evaluate the infinite sum k=12(k+2)k\sum_{k=1}^{\infty} \frac{2}{(k+2)k}.

2. Solution Steps

We can use partial fraction decomposition to rewrite the fraction. We want to find constants AA and BB such that
2k(k+2)=Ak+Bk+2\frac{2}{k(k+2)} = \frac{A}{k} + \frac{B}{k+2}.
Multiplying by k(k+2)k(k+2) gives
2=A(k+2)+Bk2 = A(k+2) + Bk.
Let k=0k = 0. Then 2=A(0+2)+B(0)2 = A(0+2) + B(0), so 2=2A2 = 2A and A=1A = 1.
Let k=2k = -2. Then 2=A(2+2)+B(2)2 = A(-2+2) + B(-2), so 2=2B2 = -2B and B=1B = -1.
Therefore,
2k(k+2)=1k1k+2\frac{2}{k(k+2)} = \frac{1}{k} - \frac{1}{k+2}.
Now we can rewrite the sum as
k=12k(k+2)=k=1(1k1k+2)\sum_{k=1}^{\infty} \frac{2}{k(k+2)} = \sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+2}\right).
This is a telescoping sum. Let's write out the first few terms:
(1113)+(1214)+(1315)+(1416)+(1517)+(\frac{1}{1} - \frac{1}{3}) + (\frac{1}{2} - \frac{1}{4}) + (\frac{1}{3} - \frac{1}{5}) + (\frac{1}{4} - \frac{1}{6}) + (\frac{1}{5} - \frac{1}{7}) + \dots
We can see that the terms 13,14,15,-\frac{1}{3}, -\frac{1}{4}, -\frac{1}{5}, \dots will cancel with the terms 13,14,15,\frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots
We can write the partial sum SnS_n as
Sn=k=1n(1k1k+2)=(113)+(1214)+(1315)++(1n11n+1)+(1n1n+2)S_n = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+2}\right) = \left(1 - \frac{1}{3}\right) + \left(\frac{1}{2} - \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{1}{5}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n+1}\right) + \left(\frac{1}{n} - \frac{1}{n+2}\right).
The terms that remain are 1,12,1n+1,1n+21, \frac{1}{2}, -\frac{1}{n+1}, -\frac{1}{n+2}.
So Sn=1+121n+11n+2S_n = 1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2}.
As nn \to \infty, 1n+10\frac{1}{n+1} \to 0 and 1n+20\frac{1}{n+2} \to 0.
Therefore, k=1(1k1k+2)=1+12=32\sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+2}\right) = 1 + \frac{1}{2} = \frac{3}{2}.

3. Final Answer

32\frac{3}{2}

Related problems in "Analysis"

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1