与えられた数式を解きます。数式は $69x(-7.2) + 31x(7.2)$ です。

代数学一次式計算分配法則
2025/6/4

1. 問題の内容

与えられた数式を解きます。数式は 69x(7.2)+31x(7.2)69x(-7.2) + 31x(7.2) です。

2. 解き方の手順

まず、それぞれの項を計算します。
69x(7.2)=496.8x69x(-7.2) = -496.8x
31x(7.2)=223.2x31x(7.2) = 223.2x
次に、これらの項を足し合わせます。
496.8x+223.2x=273.6x-496.8x + 223.2x = -273.6x

3. 最終的な答え

273.6x-273.6x

「代数学」の関連問題

2x2行列X, Yについて、以下の連立方程式を満たすXとYを求めます。 $X + 2Y = \begin{pmatrix} 5 & 0 \\ -1 & 5 \end{pmatrix}$ $3X - Y...

行列連立方程式線形代数
2025/6/6

2次関数 $f(x) = x^2 - 2x + 1$ が与えられています。 (1) $f(3)$, (2) $f(0)$, (3) $f(-1)$, (4) $f(-2)$, (5) $f(-a)$,...

二次関数関数の計算代入
2025/6/6

底辺の長さが4cm、高さが$x$cmの三角形の面積を$y$cm$^2$とする。ただし、高さは4cm以上であるとする。$y$を$x$の式で表せ。

面積一次関数数式
2025/6/6

この問題は、行列のn乗の計算、一次変換を表す行列の決定、写像が一次変換であるかの判定、および回転行列に関する等式の証明に関するものです。具体的には以下の4つの問題があります。 (1) 行列 $A = ...

行列一次変換回転行列行列のn乗線形写像
2025/6/6

次の連立不等式を解く問題です。 (1) $ \begin{cases} 6x - 9 < 2x - 1 \\ 3x + 7 \le 4(2x + 3) \end{cases} $ (2) $ \beg...

連立不等式不等式
2025/6/6

行列 $A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ に対して、$A^n$ を求める。ただし、$n$ は自然数、$a$ は実数。

行列線形代数数学的帰納法一次変換回転行列加法定理
2025/6/6

$n$ ($n \ge 2$) 次の多項式 $f(x)$ が、$f(k) = \frac{1}{k+1}$ ($k = 0, 1, 2, ..., n$) を満たすとき、$f(n+1)$ の値を $n...

多項式因数関数
2025/6/6

(1) 方程式 $25^x = 5^{x+3}$ を解く。 (2) 方程式 $\log_3 x + \log_3 (x+2) = 1$ を解く。 (3) $-\frac{\pi}{2} < \thet...

指数対数三角関数極限
2025/6/6

## 1. 問題の内容

指数方程式対数方程式三角関数加法定理極限
2025/6/6

与えられた行列で表される線形変換によって、直線 $y = x + 1$ がどのように変換されるか、その像を求めます。ここでは例として、行列 $\begin{pmatrix} 2 & -1 \\ 1 &...

線形代数線形変換行列一次変換直線
2025/6/6