We are asked to evaluate the following three definite integrals: $I = \int_{1}^{4} (\frac{2}{\sqrt{x}} + 6x^2 - 5) dx$ $J = \int_{0}^{\frac{\pi}{4}} (1 - 2\sin^2 x) dx$ $K = \int_{2}^{3} \frac{x^3 + x^2 - 1}{x^2 - 1} dx$

AnalysisDefinite IntegralsIntegration TechniquesTrigonometric IdentitiesPolynomial Long Division
2025/3/27

1. Problem Description

We are asked to evaluate the following three definite integrals:
I=14(2x+6x25)dxI = \int_{1}^{4} (\frac{2}{\sqrt{x}} + 6x^2 - 5) dx
J=0π4(12sin2x)dxJ = \int_{0}^{\frac{\pi}{4}} (1 - 2\sin^2 x) dx
K=23x3+x21x21dxK = \int_{2}^{3} \frac{x^3 + x^2 - 1}{x^2 - 1} dx

2. Solution Steps

For II:
I=14(2x+6x25)dx=14(2x1/2+6x25)dxI = \int_{1}^{4} (\frac{2}{\sqrt{x}} + 6x^2 - 5) dx = \int_{1}^{4} (2x^{-1/2} + 6x^2 - 5) dx
I=[2x1/21/2+6x335x]14=[4x+2x35x]14I = [2 \cdot \frac{x^{1/2}}{1/2} + 6 \cdot \frac{x^3}{3} - 5x]_1^4 = [4\sqrt{x} + 2x^3 - 5x]_1^4
I=(44+2(43)5(4))(41+2(13)5(1))=(4(2)+2(64)20)(4+25)I = (4\sqrt{4} + 2(4^3) - 5(4)) - (4\sqrt{1} + 2(1^3) - 5(1)) = (4(2) + 2(64) - 20) - (4 + 2 - 5)
I=(8+12820)(1)=1161=115I = (8 + 128 - 20) - (1) = 116 - 1 = 115
For JJ:
J=0π4(12sin2x)dxJ = \int_{0}^{\frac{\pi}{4}} (1 - 2\sin^2 x) dx
Using the trigonometric identity cos(2x)=12sin2(x)\cos(2x) = 1 - 2\sin^2(x), we have:
J=0π4cos(2x)dxJ = \int_{0}^{\frac{\pi}{4}} \cos(2x) dx
J=[12sin(2x)]0π4=12sin(2π4)12sin(0)=12sin(π2)0J = [\frac{1}{2} \sin(2x)]_{0}^{\frac{\pi}{4}} = \frac{1}{2} \sin(2 \cdot \frac{\pi}{4}) - \frac{1}{2} \sin(0) = \frac{1}{2} \sin(\frac{\pi}{2}) - 0
J=12(1)=12J = \frac{1}{2} (1) = \frac{1}{2}
For KK:
K=23x3+x21x21dxK = \int_{2}^{3} \frac{x^3 + x^2 - 1}{x^2 - 1} dx
We perform polynomial long division:
x3+x21x21=x+1+xx21\frac{x^3 + x^2 - 1}{x^2 - 1} = x + 1 + \frac{x}{x^2 - 1}
Thus, K=23(x+1+xx21)dxK = \int_{2}^{3} (x + 1 + \frac{x}{x^2 - 1}) dx
K=23(x+1)dx+23xx21dxK = \int_{2}^{3} (x + 1) dx + \int_{2}^{3} \frac{x}{x^2 - 1} dx
K=[x22+x]23+12232xx21dxK = [\frac{x^2}{2} + x]_2^3 + \frac{1}{2} \int_{2}^{3} \frac{2x}{x^2 - 1} dx
K=(322+3)(222+2)+12[lnx21]23K = (\frac{3^2}{2} + 3) - (\frac{2^2}{2} + 2) + \frac{1}{2} [\ln |x^2 - 1|]_2^3
K=(92+3)(2+2)+12(ln321ln221)=(152)4+12(ln8ln3)K = (\frac{9}{2} + 3) - (2 + 2) + \frac{1}{2} (\ln |3^2 - 1| - \ln |2^2 - 1|) = (\frac{15}{2}) - 4 + \frac{1}{2} (\ln 8 - \ln 3)
K=15282+12ln(83)=72+12ln(83)K = \frac{15}{2} - \frac{8}{2} + \frac{1}{2} \ln(\frac{8}{3}) = \frac{7}{2} + \frac{1}{2} \ln(\frac{8}{3})
K=72+12ln(83)K = \frac{7}{2} + \frac{1}{2} \ln(\frac{8}{3})

3. Final Answer

I=115I = 115
J=12J = \frac{1}{2}
K=72+12ln(83)K = \frac{7}{2} + \frac{1}{2}\ln(\frac{8}{3})

Related problems in "Analysis"

We are asked to evaluate the following integral: $\int_0^{+\infty} \frac{dx}{(1+x)(\pi^2 + \ln^2 x)}...

Definite IntegralIntegration TechniquesSubstitutionCalculus
2025/4/7

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1