The problem asks to evaluate the integral: $\int \frac{x^{4037}}{(x^2 + 1)^{2020}} dx$

AnalysisCalculusIntegrationTrigonometric SubstitutionDefinite Integrals
2025/3/27

1. Problem Description

The problem asks to evaluate the integral:
x4037(x2+1)2020dx\int \frac{x^{4037}}{(x^2 + 1)^{2020}} dx

2. Solution Steps

We can rewrite the exponent in the numerator as follows:
x4037=x40403=x2(2020)3x^{4037} = x^{4040 - 3} = x^{2(2020) - 3}
Let x=tanθx = \tan{\theta}. Then dx=sec2θdθdx = \sec^2{\theta} d\theta. Also, x2+1=tan2θ+1=sec2θx^2 + 1 = \tan^2{\theta} + 1 = \sec^2{\theta}.
The integral becomes:
(tanθ)4037(sec2θ)2020sec2θdθ=tan4037θsec4040θsec2θdθ=tan4037θsec4038θdθ\int \frac{(\tan{\theta})^{4037}}{(\sec^2{\theta})^{2020}} \sec^2{\theta} d\theta = \int \frac{\tan^{4037}{\theta}}{\sec^{4040}{\theta}} \sec^2{\theta} d\theta = \int \frac{\tan^{4037}{\theta}}{\sec^{4038}{\theta}} d\theta
=sin4037θcos4037θcos4038θdθ=sin4037θcosθdθ= \int \frac{\sin^{4037}{\theta}}{\cos^{4037}{\theta}} \cos^{4038}{\theta} d\theta = \int \sin^{4037}{\theta} \cos{\theta} d\theta
Let u=sinθu = \sin{\theta}, then du=cosθdθdu = \cos{\theta} d\theta.
Then the integral becomes u4037du=u40384038+C=sin4038θ4038+C\int u^{4037} du = \frac{u^{4038}}{4038} + C = \frac{\sin^{4038}{\theta}}{4038} + C.
Since x=tanθx = \tan{\theta}, we have sinθ=xx2+1\sin{\theta} = \frac{x}{\sqrt{x^2 + 1}}.
Therefore,
sin4038θ4038+C=14038(xx2+1)4038+C=x40384038(x2+1)2019+C\frac{\sin^{4038}{\theta}}{4038} + C = \frac{1}{4038} \left(\frac{x}{\sqrt{x^2 + 1}}\right)^{4038} + C = \frac{x^{4038}}{4038 (x^2 + 1)^{2019}} + C

3. Final Answer

x40384038(x2+1)2019+C\frac{x^{4038}}{4038(x^2+1)^{2019}} + C

Related problems in "Analysis"

We are asked to evaluate the following integral: $\int_0^{+\infty} \frac{dx}{(1+x)(\pi^2 + \ln^2 x)}...

Definite IntegralIntegration TechniquesSubstitutionCalculus
2025/4/7

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1