The problem asks to calculate the limits of various functions, indicating when they do not exist and why. It also asks to discuss the continuity of each function at the specified point, illustrate the epsilon-delta definition of a limit with a specific example, and prove statements using the epsilon-delta definition of the limit.

AnalysisLimitsContinuityEpsilon-Delta DefinitionCalculus
2025/6/6

1. Problem Description

The problem asks to calculate the limits of various functions, indicating when they do not exist and why. It also asks to discuss the continuity of each function at the specified point, illustrate the epsilon-delta definition of a limit with a specific example, and prove statements using the epsilon-delta definition of the limit.

2. Solution Steps

(a) limx5x26x+5x5\lim_{x\to 5} \frac{x^2 - 6x + 5}{x - 5}
First, factor the numerator: x26x+5=(x5)(x1)x^2 - 6x + 5 = (x - 5)(x - 1). Then,
limx5(x5)(x1)x5=limx5(x1)=51=4\lim_{x\to 5} \frac{(x - 5)(x - 1)}{x - 5} = \lim_{x\to 5} (x - 1) = 5 - 1 = 4
(b) limt3t292t2+7t+3\lim_{t\to -3} \frac{t^2 - 9}{2t^2 + 7t + 3}
Factor the numerator and denominator:
t29=(t3)(t+3)t^2 - 9 = (t - 3)(t + 3)
2t2+7t+3=(2t+1)(t+3)2t^2 + 7t + 3 = (2t + 1)(t + 3)
Then,
limt3(t3)(t+3)(2t+1)(t+3)=limt3t32t+1=332(3)+1=66+1=65=65\lim_{t\to -3} \frac{(t - 3)(t + 3)}{(2t + 1)(t + 3)} = \lim_{t\to -3} \frac{t - 3}{2t + 1} = \frac{-3 - 3}{2(-3) + 1} = \frac{-6}{-6 + 1} = \frac{-6}{-5} = \frac{6}{5}
(c) limx2x+2x3+8\lim_{x\to -2} \frac{x + 2}{x^3 + 8}
Factor the denominator using the sum of cubes formula:
x3+8=(x+2)(x22x+4)x^3 + 8 = (x + 2)(x^2 - 2x + 4)
Then,
limx2x+2(x+2)(x22x+4)=limx21x22x+4=1(2)22(2)+4=14+4+4=112\lim_{x\to -2} \frac{x + 2}{(x + 2)(x^2 - 2x + 4)} = \lim_{x\to -2} \frac{1}{x^2 - 2x + 4} = \frac{1}{(-2)^2 - 2(-2) + 4} = \frac{1}{4 + 4 + 4} = \frac{1}{12}
(d) limh0(3+h)131h\lim_{h\to 0} \frac{(3 + h)^{-1} - 3^{-1}}{h}
Rewrite the expression:
13+h13h=3(3+h)3(3+h)h=h3(3+h)h=h3h(3+h)=13(3+h)\frac{\frac{1}{3 + h} - \frac{1}{3}}{h} = \frac{\frac{3 - (3 + h)}{3(3 + h)}}{h} = \frac{\frac{-h}{3(3 + h)}}{h} = \frac{-h}{3h(3 + h)} = \frac{-1}{3(3 + h)}
Then,
limh013(3+h)=13(3+0)=19\lim_{h\to 0} \frac{-1}{3(3 + h)} = \frac{-1}{3(3 + 0)} = \frac{-1}{9}
(e) limx1x41x+1\lim_{x\to -1} \frac{x^4 - 1}{x + 1} if x1x \ne -1, and 0 if x=1x = -1
Factor the numerator:
x41=(x21)(x2+1)=(x1)(x+1)(x2+1)x^4 - 1 = (x^2 - 1)(x^2 + 1) = (x - 1)(x + 1)(x^2 + 1)
Then, for x1x \ne -1,
limx1(x1)(x+1)(x2+1)x+1=limx1(x1)(x2+1)=(11)((1)2+1)=(2)(1+1)=(2)(2)=4\lim_{x\to -1} \frac{(x - 1)(x + 1)(x^2 + 1)}{x + 1} = \lim_{x\to -1} (x - 1)(x^2 + 1) = (-1 - 1)((-1)^2 + 1) = (-2)(1 + 1) = (-2)(2) = -4
Since the limit as xx approaches 1-1 is 4-4, but the function is defined as 00 when x=1x = -1, the limit exists and equals 4-4.
(f) limx122x12x3x2\lim_{x\to \frac{1}{2}} \frac{2x - 1}{|2x^3 - x^2|}
Factor the denominator:
2x3x2=x2(2x1)=x22x1|2x^3 - x^2| = |x^2(2x - 1)| = x^2|2x - 1|
Then,
limx122x1x22x1\lim_{x\to \frac{1}{2}} \frac{2x - 1}{x^2|2x - 1|}
Consider the limit from the left (x12x \to \frac{1}{2}^-), then 2x1<02x - 1 < 0, so 2x1=(2x1)=12x|2x-1| = -(2x-1) = 1 - 2x.
limx122x1x2(12x)=limx12(12x)x2(12x)=limx121x2=1(12)2=114=4\lim_{x\to \frac{1}{2}^-} \frac{2x - 1}{x^2(1 - 2x)} = \lim_{x\to \frac{1}{2}^-} \frac{-(1 - 2x)}{x^2(1 - 2x)} = \lim_{x\to \frac{1}{2}^-} \frac{-1}{x^2} = \frac{-1}{(\frac{1}{2})^2} = \frac{-1}{\frac{1}{4}} = -4
Consider the limit from the right (x12+x \to \frac{1}{2}^+), then 2x1>02x - 1 > 0, so 2x1=2x1|2x-1| = 2x-1.
limx12+2x1x2(2x1)=limx12+1x2=1(12)2=114=4\lim_{x\to \frac{1}{2}^+} \frac{2x - 1}{x^2(2x - 1)} = \lim_{x\to \frac{1}{2}^+} \frac{1}{x^2} = \frac{1}{(\frac{1}{2})^2} = \frac{1}{\frac{1}{4}} = 4
Since the left-hand limit and the right-hand limit are not equal, the limit does not exist.
(g) limx2[x]+[x]\lim_{x\to -2} [x] + [-x] where [x][x] is the greatest integer function.
If xx is not an integer, then [x]+[x]=1[x] + [-x] = -1.
If xx is an integer, then [x]+[x]=xx=0[x] + [-x] = x - x = 0
limx2[x]+[x]=0\lim_{x \to -2} [x] + [-x] = 0. However, as xx approaches -2 from the left or right, it will not be exactly -2, thus the value will be -

1. Therefore, the limit is -

1.
(h) limt1H(t)\lim_{t\to 1} H(t) where H(t)={0 if t<01 if t0H(t) = \begin{cases} 0 \text{ if } t < 0 \\ 1 \text{ if } t \ge 0 \end{cases}
Since 1>01 > 0, as tt approaches 11, we have t>0t > 0, so H(t)=1H(t) = 1.
limt1H(t)=1\lim_{t\to 1} H(t) = 1
II. Continuity discussion:
(a) The function f(x)=x26x+5x5f(x) = \frac{x^2-6x+5}{x-5} is not continuous at x=5x=5 because it is not defined there.
(b) The function f(t)=t292t2+7t+3f(t) = \frac{t^2-9}{2t^2+7t+3} is not continuous at t=3t=-3 and t=12t=-\frac{1}{2} because it is not defined there.
(c) The function f(x)=x+2x3+8f(x) = \frac{x+2}{x^3+8} is not continuous at x=2x=-2 because it is not defined there.
(d) The function f(h)=(3+h)131hf(h) = \frac{(3+h)^{-1}-3^{-1}}{h} is not continuous at h=0h=0 because it is not defined there.
(e) The function is defined as f(x)=x41x+1f(x) = \frac{x^4-1}{x+1} for x1x\ne -1 and f(x)=0f(x) = 0 for x=1x=-1. Since limx1f(x)=4f(1)=0\lim_{x\to -1} f(x) = -4 \ne f(-1) = 0, the function is not continuous at x=1x=-1.
(f) The function f(x)=2x12x3x2f(x) = \frac{2x-1}{|2x^3-x^2|} is not continuous at x=1/2x=1/2 because it is not defined there.
(g) The function f(x)=[x]+[x]f(x) = [x] + [-x] is not continuous at x=2x = -2.
(h) The function H(t)H(t) is continuous everywhere except at t=0t = 0. Since t1t \to 1, the function is continuous at t=1t=1.
III. Illustrate the precise definition of limits by finding the values of δ\delta that correspond to the given values of ϵ\epsilon:
limx212x+3=2\lim_{x\to -2} \frac{1}{2}x + 3 = 2. ϵ=1,ϵ=0.01\epsilon = 1, \epsilon = 0.01
12x+32<ϵ|\frac{1}{2}x + 3 - 2| < \epsilon
12x+1<ϵ|\frac{1}{2}x + 1| < \epsilon
12(x+2)<ϵ|\frac{1}{2}(x + 2)| < \epsilon
12x+2<ϵ\frac{1}{2}|x + 2| < \epsilon
x+2<2ϵ|x + 2| < 2\epsilon
Thus δ=2ϵ\delta = 2\epsilon
If ϵ=1\epsilon = 1, δ=2(1)=2\delta = 2(1) = 2.
If ϵ=0.01\epsilon = 0.01, δ=2(0.01)=0.02\delta = 2(0.01) = 0.02.
IV. Prove the statement using the ϵ\epsilon, δ\delta definition of the limit
(a) limx3(14x)=13\lim_{x\to -3} (1 - 4x) = 13
14x13<ϵ|1 - 4x - 13| < \epsilon
4x12<ϵ|-4x - 12| < \epsilon
4(x+3)<ϵ|-4(x + 3)| < \epsilon
4x+3<ϵ4|x + 3| < \epsilon
x+3<ϵ4|x + 3| < \frac{\epsilon}{4}
Choose δ=ϵ4\delta = \frac{\epsilon}{4}.
(b) limx2(3x+5)=1\lim_{x\to -2} (3x + 5) = -1
3x+5(1)<ϵ|3x + 5 - (-1)| < \epsilon
3x+6<ϵ|3x + 6| < \epsilon
3(x+2)<ϵ|3(x + 2)| < \epsilon
3x+2<ϵ3|x + 2| < \epsilon
x+2<ϵ3|x + 2| < \frac{\epsilon}{3}
Choose δ=ϵ3\delta = \frac{\epsilon}{3}.
(c) limx1.594x23+2x=6\lim_{x\to -1.5} \frac{9 - 4x^2}{3 + 2x} = 6
94x23+2x=(32x)(3+2x)3+2x=32x\frac{9-4x^2}{3+2x} = \frac{(3-2x)(3+2x)}{3+2x} = 3-2x, for x1.5x \ne -1.5
32x6<ϵ|3 - 2x - 6| < \epsilon
2x3<ϵ|-2x - 3| < \epsilon
2(x+1.5)<ϵ|-2(x + 1.5)| < \epsilon
2x+1.5<ϵ2|x + 1.5| < \epsilon
x+1.5<ϵ2|x + 1.5| < \frac{\epsilon}{2}
Choose δ=ϵ2\delta = \frac{\epsilon}{2}.
(d) limxax=a\lim_{x\to a} x = a
xa<ϵ|x - a| < \epsilon
Choose δ=ϵ\delta = \epsilon.

3. Final Answer

(a) 4
(b) 6/5
(c) 1/12
(d) -1/9
(e) -4
(f) Does not exist
(g) -1
(h) 1
II. Continuity discussion: see step
2.
III. δ=2\delta = 2 for ϵ=1\epsilon = 1; δ=0.02\delta = 0.02 for ϵ=0.01\epsilon = 0.01
IV. (a) δ=ϵ4\delta = \frac{\epsilon}{4}
(b) δ=ϵ3\delta = \frac{\epsilon}{3}
(c) δ=ϵ2\delta = \frac{\epsilon}{2}
(d) δ=ϵ\delta = \epsilon

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7