0, 1, 2, 3, 4 の5個の数字をすべて1個ずつ使って、5桁の奇数を作る場合、何個作れるか。

算数場合の数順列奇数数字の並び
2025/6/8

1. 問題の内容

0, 1, 2, 3, 4 の5個の数字をすべて1個ずつ使って、5桁の奇数を作る場合、何個作れるか。

2. 解き方の手順

5桁の奇数を作るので、一の位に注目します。一の位に来ることができるのは、1 か 3 のいずれかです。
(i) 一の位が1の場合:
一の位が1と決まったので、残りの4桁を考えます。
千の位には0が来れないので、千の位には2, 3, 4のいずれかが来ます。千の位の選び方は3通りです。
百の位には残りの3つの数字のいずれかが来ます。選び方は3通りです。
十の位には残りの2つの数字のいずれかが来ます。選び方は2通りです。
万の位には残りの1つの数字が来ます。選び方は1通りです。
よって、この場合は 3×3×2×1=183 \times 3 \times 2 \times 1 = 18 通りあります。
(ii) 一の位が3の場合:
一の位が3と決まったので、残りの4桁を考えます。
千の位には0が来れないので、千の位には1, 2, 4のいずれかが来ます。千の位の選び方は3通りです。
百の位には残りの3つの数字のいずれかが来ます。選び方は3通りです。
十の位には残りの2つの数字のいずれかが来ます。選び方は2通りです。
万の位には残りの1つの数字が来ます。選び方は1通りです。
よって、この場合は 3×3×2×1=183 \times 3 \times 2 \times 1 = 18 通りあります。
(i) と (ii) より、合計で 18+18=3618 + 18 = 36 通りとなります。

3. 最終的な答え

36個

「算数」の関連問題

大人3人と子供3人が輪の形に並ぶとき、大人と子供が交互に並ぶ並び方は何通りあるか。

順列円順列組み合わせ場合の数
2025/6/8

大人3人と子供3人が輪になって並ぶとき、特定の子どもA, Bが隣り合う並び方は何通りあるか。

順列組み合わせ円順列
2025/6/8

指定された種類の硬貨がそれぞれ指定された枚数あるとき、これらの硬貨の一部または全部を使って、ちょうど支払うことができる金額は何通りあるかを求める問題です。 (1) 10円硬貨4枚、50円硬貨1枚、10...

組み合わせ場合の数硬貨
2025/6/8

大人4人と子供4人が横一列に並ぶとき、両端が子供であるような並び方は何通りあるか。

順列組み合わせ場合の数
2025/6/8

大人4人と子供4人が横一列に並ぶとき、両端が子供であるような並び方は何通りあるかを求める問題です。

順列組み合わせ場合の数
2025/6/8

2.025を分数で表す問題です。ただし、導出過程を記述する必要があります。

分数小数約分
2025/6/8

分数 $\frac{37}{7}$ を小数で表したとき、小数第200位の数字を求めよ。

分数小数循環小数割り算
2025/6/8

問題5と問題6で、$\sqrt{5}=2.236$, $\sqrt{50}=7.071$, $\sqrt{3}=1.732$, $\sqrt{30}=5.477$が与えられたとき、以下の値を求めなさい...

平方根計算数値計算ルート
2025/6/8

問題は2つあります。 1つ目の問題は、分数 $\frac{3}{7}$ を小数で表したとき、小数第200位の数字を求める問題です。 2つ目の問題は、$x=\frac{2}{\sqrt{3}+1}$、$...

小数循環小数無理数計算
2025/6/8

分速29mは時速何kmか。

速さ単位換算分数
2025/6/8