The image contains four problems related to calculus:

AnalysisLimitsCalculusEpsilon-Delta DefinitionDerivativesFirst Principle
2025/6/8

1. Problem Description

The image contains four problems related to calculus:

2. 1 Prove that $\lim_{x\to -2} (x^2-1) = 3$ using the precise definition of the limit.

3. 2 Prove that $\lim_{x\to 4^+} \frac{2}{\sqrt{x-4}} = +\infty$ using the precise definition of the limit.

4. 3 Find the limit: $\lim_{x\to \frac{\pi}{4}} \frac{1-\tan x}{\sin x - \cos x}$.

5. 4 Find the derivative $f'(x)$ of the function $f(x) = \sqrt{9-x}$ using the first principle definition of the derivative.

6. Solution Steps

7. 1: Proving $\lim_{x\to -2} (x^2-1) = 3$ using the $\epsilon$-$\delta$ definition.

We need to show that for any ϵ>0\epsilon > 0, there exists a δ>0\delta > 0 such that if 0<x(2)<δ0 < |x - (-2)| < \delta, then (x21)3<ϵ|(x^2 - 1) - 3| < \epsilon.
(x21)3=x24=(x2)(x+2)=x2x+2|(x^2 - 1) - 3| = |x^2 - 4| = |(x-2)(x+2)| = |x-2| |x+2|.
We want to bound x2|x-2|. Let's assume that x+2<1|x+2| < 1. Then 1<x+2<1-1 < x+2 < 1, which means 3<x<1-3 < x < -1. Therefore, 5<x2<3-5 < x-2 < -3, so x2<5|x-2| < 5.
Now, (x21)3=x2x+2<5x+2|(x^2 - 1) - 3| = |x-2| |x+2| < 5 |x+2|.
We want 5x+2<ϵ5 |x+2| < \epsilon, so x+2<ϵ5|x+2| < \frac{\epsilon}{5}.
Choose δ=min{1,ϵ5}\delta = \min\{1, \frac{\epsilon}{5}\}. Then if 0<x+2<δ0 < |x+2| < \delta, we have:
(x21)3=x24=x2x+2<5x+2<5ϵ5=ϵ|(x^2 - 1) - 3| = |x^2 - 4| = |x-2||x+2| < 5 |x+2| < 5 \cdot \frac{\epsilon}{5} = \epsilon.
Thus, limx2(x21)=3\lim_{x\to -2} (x^2-1) = 3.

8. 2: Proving $\lim_{x\to 4^+} \frac{2}{\sqrt{x-4}} = +\infty$.

We need to show that for any M>0M > 0, there exists a δ>0\delta > 0 such that if 4<x<4+δ4 < x < 4 + \delta, then 2x4>M\frac{2}{\sqrt{x-4}} > M.
We want 2x4>M\frac{2}{\sqrt{x-4}} > M. This is equivalent to x4<2M\sqrt{x-4} < \frac{2}{M}, which implies x4<4M2x-4 < \frac{4}{M^2}.
So, x<4+4M2x < 4 + \frac{4}{M^2}. Let δ=4M2\delta = \frac{4}{M^2}.
If 4<x<4+δ4 < x < 4 + \delta, then 0<x4<δ=4M20 < x-4 < \delta = \frac{4}{M^2}.
Then x4<4M2=2M\sqrt{x-4} < \sqrt{\frac{4}{M^2}} = \frac{2}{M}.
Therefore, 2x4>22M=M\frac{2}{\sqrt{x-4}} > \frac{2}{\frac{2}{M}} = M.
Thus, limx4+2x4=+\lim_{x\to 4^+} \frac{2}{\sqrt{x-4}} = +\infty.

9. 3: Finding the limit $\lim_{x\to \frac{\pi}{4}} \frac{1-\tan x}{\sin x - \cos x}$.

We can rewrite tanx\tan x as sinxcosx\frac{\sin x}{\cos x}.
limxπ41tanxsinxcosx=limxπ41sinxcosxsinxcosx=limxπ4cosxsinxcosxsinxcosx=limxπ4cosxsinxcosx(sinxcosx)=limxπ4(sinxcosx)cosx(sinxcosx)=limxπ41cosx\lim_{x\to \frac{\pi}{4}} \frac{1-\tan x}{\sin x - \cos x} = \lim_{x\to \frac{\pi}{4}} \frac{1-\frac{\sin x}{\cos x}}{\sin x - \cos x} = \lim_{x\to \frac{\pi}{4}} \frac{\frac{\cos x - \sin x}{\cos x}}{\sin x - \cos x} = \lim_{x\to \frac{\pi}{4}} \frac{\cos x - \sin x}{\cos x (\sin x - \cos x)} = \lim_{x\to \frac{\pi}{4}} \frac{-(\sin x - \cos x)}{\cos x (\sin x - \cos x)} = \lim_{x\to \frac{\pi}{4}} \frac{-1}{\cos x}.
Since cos(π4)=22\cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}, the limit is 122=22=2\frac{-1}{\frac{\sqrt{2}}{2}} = -\frac{2}{\sqrt{2}} = -\sqrt{2}.
1

0. 4: Finding the derivative of $f(x) = \sqrt{9-x}$ using the first principle definition.

f(x)=limh0f(x+h)f(x)h=limh09(x+h)9xhf'(x) = \lim_{h\to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h\to 0} \frac{\sqrt{9-(x+h)} - \sqrt{9-x}}{h}.
Multiply by the conjugate:
f(x)=limh09(x+h)9xh9(x+h)+9x9(x+h)+9x=limh0(9(x+h))(9x)h(9(x+h)+9x)=limh09xh9+xh(9(x+h)+9x)=limh0hh(9(x+h)+9x)=limh019(x+h)+9xf'(x) = \lim_{h\to 0} \frac{\sqrt{9-(x+h)} - \sqrt{9-x}}{h} \cdot \frac{\sqrt{9-(x+h)} + \sqrt{9-x}}{\sqrt{9-(x+h)} + \sqrt{9-x}} = \lim_{h\to 0} \frac{(9-(x+h)) - (9-x)}{h(\sqrt{9-(x+h)} + \sqrt{9-x})} = \lim_{h\to 0} \frac{9-x-h - 9+x}{h(\sqrt{9-(x+h)} + \sqrt{9-x})} = \lim_{h\to 0} \frac{-h}{h(\sqrt{9-(x+h)} + \sqrt{9-x})} = \lim_{h\to 0} \frac{-1}{\sqrt{9-(x+h)} + \sqrt{9-x}}.
As h0h \to 0, we have:
f(x)=19x+9x=129xf'(x) = \frac{-1}{\sqrt{9-x} + \sqrt{9-x}} = \frac{-1}{2\sqrt{9-x}}.
1

1. Final Answer

1

2. 1: The precise definition of the limit is proved.

1

3. 2: The precise definition of the limit is proved.

1

4. 3: $-\sqrt{2}$

1

5. 4: $f'(x) = \frac{-1}{2\sqrt{9-x}}$

Related problems in "Analysis"

The problem has three parts. 2.1: A balloon is rising at 2 m/s and a boy is cycling at 5 m/s. When t...

Related RatesIntermediate Value TheoremMean Value TheoremCalculusDerivativesContinuityDifferentiation
2025/6/8

We are asked to find the limit of two expressions, if they exist. If the limit does not exist, we ne...

LimitsDifferentiationAbsolute ValueCalculus
2025/6/8

We are given a piecewise function $f(x)$ defined as: $f(x) = \begin{cases} 1-\sqrt{-x-1} & \text{if ...

Piecewise FunctionsDomainRangeContinuityGreatest Integer Function
2025/6/8

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7