定積分 $\int_{-1}^{1} (x^3 + 5x^2 - \frac{71}{2}x + 4) dx$ の値を計算します。解析学定積分積分計算2025/6/91. 問題の内容定積分 ∫−11(x3+5x2−712x+4)dx\int_{-1}^{1} (x^3 + 5x^2 - \frac{71}{2}x + 4) dx∫−11(x3+5x2−271x+4)dx の値を計算します。2. 解き方の手順まず、積分の中の関数を項ごとに積分します。∫−11x3dx=[14x4]−11=14(14−(−1)4)=14(1−1)=0\int_{-1}^{1} x^3 dx = [\frac{1}{4}x^4]_{-1}^{1} = \frac{1}{4}(1^4 - (-1)^4) = \frac{1}{4}(1-1) = 0∫−11x3dx=[41x4]−11=41(14−(−1)4)=41(1−1)=0∫−115x2dx=5∫−11x2dx=5[13x3]−11=5(13(13−(−1)3))=5(13(1−(−1)))=5(23)=103\int_{-1}^{1} 5x^2 dx = 5 \int_{-1}^{1} x^2 dx = 5 [\frac{1}{3}x^3]_{-1}^{1} = 5 (\frac{1}{3}(1^3 - (-1)^3)) = 5 (\frac{1}{3}(1 - (-1))) = 5 (\frac{2}{3}) = \frac{10}{3}∫−115x2dx=5∫−11x2dx=5[31x3]−11=5(31(13−(−1)3))=5(31(1−(−1)))=5(32)=310∫−11−712xdx=−712∫−11xdx=−712[12x2]−11=−712(12(12−(−1)2))=−712(12(1−1))=0\int_{-1}^{1} -\frac{71}{2}x dx = -\frac{71}{2} \int_{-1}^{1} x dx = -\frac{71}{2} [\frac{1}{2}x^2]_{-1}^{1} = -\frac{71}{2} (\frac{1}{2}(1^2 - (-1)^2)) = -\frac{71}{2} (\frac{1}{2}(1-1)) = 0∫−11−271xdx=−271∫−11xdx=−271[21x2]−11=−271(21(12−(−1)2))=−271(21(1−1))=0∫−114dx=[4x]−11=4(1−(−1))=4(2)=8\int_{-1}^{1} 4 dx = [4x]_{-1}^{1} = 4(1 - (-1)) = 4(2) = 8∫−114dx=[4x]−11=4(1−(−1))=4(2)=8したがって、∫−11(x3+5x2−712x+4)dx=0+103+0+8=103+243=343\int_{-1}^{1} (x^3 + 5x^2 - \frac{71}{2}x + 4) dx = 0 + \frac{10}{3} + 0 + 8 = \frac{10}{3} + \frac{24}{3} = \frac{34}{3}∫−11(x3+5x2−271x+4)dx=0+310+0+8=310+324=3343. 最終的な答え343\frac{34}{3}334