与えられた数式の値を計算します。数式は $\frac{1}{1+\sqrt{2}} - \frac{2}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+2}$ です。代数学数式計算有理化根号2025/6/111. 問題の内容与えられた数式の値を計算します。数式は11+2−22+3+13+2\frac{1}{1+\sqrt{2}} - \frac{2}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+2}1+21−2+32+3+21です。2. 解き方の手順各分数の分母を有理化します。最初の分数:11+2=11+2⋅1−21−2=1−21−2=1−2−1=2−1\frac{1}{1+\sqrt{2}} = \frac{1}{1+\sqrt{2}} \cdot \frac{1-\sqrt{2}}{1-\sqrt{2}} = \frac{1-\sqrt{2}}{1-2} = \frac{1-\sqrt{2}}{-1} = \sqrt{2}-11+21=1+21⋅1−21−2=1−21−2=−11−2=2−1二番目の分数:22+3=22+3⋅2−32−3=2(2−3)2−3=2(2−3)−1=2(3−2)=23−22\frac{2}{\sqrt{2}+\sqrt{3}} = \frac{2}{\sqrt{2}+\sqrt{3}} \cdot \frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}} = \frac{2(\sqrt{2}-\sqrt{3})}{2-3} = \frac{2(\sqrt{2}-\sqrt{3})}{-1} = 2(\sqrt{3}-\sqrt{2}) = 2\sqrt{3}-2\sqrt{2}2+32=2+32⋅2−32−3=2−32(2−3)=−12(2−3)=2(3−2)=23−22三番目の分数:13+2=13+2⋅3−23−2=3−23−4=3−2−1=2−3\frac{1}{\sqrt{3}+2} = \frac{1}{\sqrt{3}+2} \cdot \frac{\sqrt{3}-2}{\sqrt{3}-2} = \frac{\sqrt{3}-2}{3-4} = \frac{\sqrt{3}-2}{-1} = 2-\sqrt{3}3+21=3+21⋅3−23−2=3−43−2=−13−2=2−3したがって、11+2−22+3+13+2=(2−1)−(23−22)+(2−3)\frac{1}{1+\sqrt{2}} - \frac{2}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+2} = (\sqrt{2}-1) - (2\sqrt{3}-2\sqrt{2}) + (2-\sqrt{3})1+21−2+32+3+21=(2−1)−(23−22)+(2−3)=2−1−23+22+2−3= \sqrt{2}-1 - 2\sqrt{3} + 2\sqrt{2} + 2 - \sqrt{3}=2−1−23+22+2−3=32−33+1= 3\sqrt{2} - 3\sqrt{3} + 1=32−33+13. 最終的な答え32−33+13\sqrt{2} - 3\sqrt{3} + 132−33+1