画像に示された8つの根号を含む計算問題を解きます。算数根号計算2025/6/141. 問題の内容画像に示された8つの根号を含む計算問題を解きます。2. 解き方の手順(1) 3+6×2\sqrt{3} + \sqrt{6} \times \sqrt{2}3+6×26×2=12=23\sqrt{6} \times \sqrt{2} = \sqrt{12} = 2\sqrt{3}6×2=12=233+23=33\sqrt{3} + 2\sqrt{3} = 3\sqrt{3}3+23=33(2) 3×15−20\sqrt{3} \times \sqrt{15} - \sqrt{20}3×15−203×15=45=35\sqrt{3} \times \sqrt{15} = \sqrt{45} = 3\sqrt{5}3×15=45=3520=25\sqrt{20} = 2\sqrt{5}20=2535−25=53\sqrt{5} - 2\sqrt{5} = \sqrt{5}35−25=5(3) 6×12+8\sqrt{6} \times \sqrt{12} + \sqrt{8}6×12+86×12=72=62\sqrt{6} \times \sqrt{12} = \sqrt{72} = 6\sqrt{2}6×12=72=628=22\sqrt{8} = 2\sqrt{2}8=2262+22=826\sqrt{2} + 2\sqrt{2} = 8\sqrt{2}62+22=82(4) 320−2×103\sqrt{20} - \sqrt{2} \times \sqrt{10}320−2×10320=3×25=653\sqrt{20} = 3 \times 2\sqrt{5} = 6\sqrt{5}320=3×25=652×10=20=25\sqrt{2} \times \sqrt{10} = \sqrt{20} = 2\sqrt{5}2×10=20=2565−25=456\sqrt{5} - 2\sqrt{5} = 4\sqrt{5}65−25=45(5) 23+54÷22\sqrt{3} + \sqrt{54} \div \sqrt{2}23+54÷254=36\sqrt{54} = 3\sqrt{6}54=3636÷2=333\sqrt{6} \div \sqrt{2} = 3\sqrt{3}36÷2=3323+33=532\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}23+33=53(6) 28−56÷8\sqrt{28} - \sqrt{56} \div \sqrt{8}28−56÷828=27\sqrt{28} = 2\sqrt{7}28=2756÷8=7\sqrt{56} \div \sqrt{8} = \sqrt{7}56÷8=727−7=72\sqrt{7} - \sqrt{7} = \sqrt{7}27−7=7(7) 40÷5+32\sqrt{40} \div \sqrt{5} + \sqrt{32}40÷5+3240÷5=8=22\sqrt{40} \div \sqrt{5} = \sqrt{8} = 2\sqrt{2}40÷5=8=2232=42\sqrt{32} = 4\sqrt{2}32=4222+42=622\sqrt{2} + 4\sqrt{2} = 6\sqrt{2}22+42=62(8) 42÷7−96\sqrt{42} \div \sqrt{7} - \sqrt{96}42÷7−9642÷7=6\sqrt{42} \div \sqrt{7} = \sqrt{6}42÷7=696=46\sqrt{96} = 4\sqrt{6}96=466−46=−36\sqrt{6} - 4\sqrt{6} = -3\sqrt{6}6−46=−363. 最終的な答え(1) 333\sqrt{3}33(2) 5\sqrt{5}5(3) 828\sqrt{2}82(4) 454\sqrt{5}45(5) 535\sqrt{3}53(6) 7\sqrt{7}7(7) 626\sqrt{2}62(8) −36-3\sqrt{6}−36