First, we use the linearity of the integral to split the integral into three parts:
∫(5x4−3x2+23x)dx=∫5x4dx−∫3x2dx+∫23xdx. Next, we can pull out the constants from each integral:
∫5x4dx−∫3x2dx+∫23xdx=5∫x4dx−3∫x2dx+23∫xdx. Recall that x=x21. Thus, we have: 5∫x4dx−3∫x2dx+23∫x21dx. Now we apply the power rule for integration:
∫xndx=n+1xn+1+C, where n=−1. 5∫x4dx=54+1x4+1=55x5=x5. −3∫x2dx=−32+1x2+1=−33x3=−x3. 23∫x21dx=2321+1x21+1=2323x23=23⋅32x23=x23. Combining the results, we have:
x5−x3+x23+C.