We are asked to evaluate the indefinite integral $\int (5x^4 - 3x^2 + \frac{3\sqrt{x}}{2}) dx$.

AnalysisIndefinite IntegralsPower RulePolynomialsCalculus
2025/3/9

1. Problem Description

We are asked to evaluate the indefinite integral (5x43x2+3x2)dx\int (5x^4 - 3x^2 + \frac{3\sqrt{x}}{2}) dx.

2. Solution Steps

First, we use the linearity of the integral to split the integral into three parts:
(5x43x2+3x2)dx=5x4dx3x2dx+3x2dx\int (5x^4 - 3x^2 + \frac{3\sqrt{x}}{2}) dx = \int 5x^4 dx - \int 3x^2 dx + \int \frac{3\sqrt{x}}{2} dx.
Next, we can pull out the constants from each integral:
5x4dx3x2dx+3x2dx=5x4dx3x2dx+32xdx\int 5x^4 dx - \int 3x^2 dx + \int \frac{3\sqrt{x}}{2} dx = 5\int x^4 dx - 3\int x^2 dx + \frac{3}{2} \int \sqrt{x} dx.
Recall that x=x12\sqrt{x} = x^{\frac{1}{2}}. Thus, we have:
5x4dx3x2dx+32x12dx5\int x^4 dx - 3\int x^2 dx + \frac{3}{2} \int x^{\frac{1}{2}} dx.
Now we apply the power rule for integration:
xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C, where n1n \neq -1.
5x4dx=5x4+14+1=5x55=x55\int x^4 dx = 5\frac{x^{4+1}}{4+1} = 5\frac{x^5}{5} = x^5.
3x2dx=3x2+12+1=3x33=x3-3\int x^2 dx = -3\frac{x^{2+1}}{2+1} = -3\frac{x^3}{3} = -x^3.
32x12dx=32x12+112+1=32x3232=3223x32=x32\frac{3}{2} \int x^{\frac{1}{2}} dx = \frac{3}{2} \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} = \frac{3}{2} \frac{x^{\frac{3}{2}}}{\frac{3}{2}} = \frac{3}{2} \cdot \frac{2}{3} x^{\frac{3}{2}} = x^{\frac{3}{2}}.
Combining the results, we have:
x5x3+x32+Cx^5 - x^3 + x^{\frac{3}{2}} + C.

3. Final Answer

x5x3+x32+Cx^5 - x^3 + x^{\frac{3}{2}} + C

Related problems in "Analysis"

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1