We are asked to evaluate the indefinite integral $\int (5x^4 - 3x^2 + \frac{3\sqrt{x}}{2}) dx$.

AnalysisIndefinite IntegralsPower RulePolynomialsCalculus
2025/3/9

1. Problem Description

We are asked to evaluate the indefinite integral (5x43x2+3x2)dx\int (5x^4 - 3x^2 + \frac{3\sqrt{x}}{2}) dx.

2. Solution Steps

First, we use the linearity of the integral to split the integral into three parts:
(5x43x2+3x2)dx=5x4dx3x2dx+3x2dx\int (5x^4 - 3x^2 + \frac{3\sqrt{x}}{2}) dx = \int 5x^4 dx - \int 3x^2 dx + \int \frac{3\sqrt{x}}{2} dx.
Next, we can pull out the constants from each integral:
5x4dx3x2dx+3x2dx=5x4dx3x2dx+32xdx\int 5x^4 dx - \int 3x^2 dx + \int \frac{3\sqrt{x}}{2} dx = 5\int x^4 dx - 3\int x^2 dx + \frac{3}{2} \int \sqrt{x} dx.
Recall that x=x12\sqrt{x} = x^{\frac{1}{2}}. Thus, we have:
5x4dx3x2dx+32x12dx5\int x^4 dx - 3\int x^2 dx + \frac{3}{2} \int x^{\frac{1}{2}} dx.
Now we apply the power rule for integration:
xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C, where n1n \neq -1.
5x4dx=5x4+14+1=5x55=x55\int x^4 dx = 5\frac{x^{4+1}}{4+1} = 5\frac{x^5}{5} = x^5.
3x2dx=3x2+12+1=3x33=x3-3\int x^2 dx = -3\frac{x^{2+1}}{2+1} = -3\frac{x^3}{3} = -x^3.
32x12dx=32x12+112+1=32x3232=3223x32=x32\frac{3}{2} \int x^{\frac{1}{2}} dx = \frac{3}{2} \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} = \frac{3}{2} \frac{x^{\frac{3}{2}}}{\frac{3}{2}} = \frac{3}{2} \cdot \frac{2}{3} x^{\frac{3}{2}} = x^{\frac{3}{2}}.
Combining the results, we have:
x5x3+x32+Cx^5 - x^3 + x^{\frac{3}{2}} + C.

3. Final Answer

x5x3+x32+Cx^5 - x^3 + x^{\frac{3}{2}} + C

Related problems in "Analysis"

The problem is to evaluate the indefinite integral of $x^n$ with respect to $x$, i.e., $\int x^n \, ...

IntegrationIndefinite IntegralPower Rule
2025/6/4

We need to find the limit of the function $x + \sqrt{x^2 + 9}$ as $x$ approaches negative infinity. ...

LimitsFunctionsCalculusInfinite LimitsConjugate
2025/6/2

The problem asks to evaluate the definite integral $\int_{2}^{4} \sqrt{x-2} \, dx$.

Definite IntegralIntegrationPower RuleCalculus
2025/6/2

The problem asks us to find the derivative of the function $y = \sqrt{\sin^{-1}(x)}$.

DerivativesChain RuleInverse Trigonometric Functions
2025/6/2

The problem asks us to find the slope of the tangent line to the polar curves at $\theta = \frac{\pi...

CalculusPolar CoordinatesDerivativesTangent Lines
2025/6/1

We are asked to change the given integral to polar coordinates and then evaluate it. The given integ...

Multiple IntegralsChange of VariablesPolar CoordinatesIntegration Techniques
2025/5/30

We are asked to evaluate the triple integral $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z...

Multiple IntegralsTriple IntegralIntegration
2025/5/29

We need to find the limit of the given expression as $x$ approaches infinity: $\lim_{x \to \infty} \...

LimitsCalculusAsymptotic Analysis
2025/5/29

We are asked to find the limit of the expression $\frac{2x - \sqrt{2x^2 - 1}}{4x - 3\sqrt{x^2 + 2}}$...

LimitsCalculusRationalizationAlgebraic Manipulation
2025/5/29

We are asked to find the limit of the given expression as $x$ approaches infinity: $\lim_{x\to\infty...

LimitsCalculusSequences and SeriesRational Functions
2025/5/29