次の方程式を解きます。 (1) $(x^2+x-1)(x^2+x-3) = 8$ (2) $x(x+1)(x-2)(x+3) = -9$代数学二次方程式因数分解複素数2025/6/151. 問題の内容次の方程式を解きます。(1) (x2+x−1)(x2+x−3)=8(x^2+x-1)(x^2+x-3) = 8(x2+x−1)(x2+x−3)=8(2) x(x+1)(x−2)(x+3)=−9x(x+1)(x-2)(x+3) = -9x(x+1)(x−2)(x+3)=−92. 解き方の手順(1) (x2+x−1)(x2+x−3)=8(x^2+x-1)(x^2+x-3) = 8(x2+x−1)(x2+x−3)=8x2+x=tx^2 + x = tx2+x=t とおくと、方程式は (t−1)(t−3)=8(t-1)(t-3) = 8(t−1)(t−3)=8 となります。これを展開すると、t2−4t+3=8t^2 - 4t + 3 = 8t2−4t+3=8t2−4t−5=0t^2 - 4t - 5 = 0t2−4t−5=0(t−5)(t+1)=0(t-5)(t+1) = 0(t−5)(t+1)=0よって、t=5t=5t=5 または t=−1t=-1t=−1 となります。(i) t=5t=5t=5 のとき、x2+x=5x^2+x = 5x2+x=5 より、x2+x−5=0x^2+x-5 = 0x2+x−5=0x=−1±12−4(1)(−5)2(1)x = \frac{-1 \pm \sqrt{1^2 - 4(1)(-5)}}{2(1)}x=2(1)−1±12−4(1)(−5)x=−1±212x = \frac{-1 \pm \sqrt{21}}{2}x=2−1±21(ii) t=−1t=-1t=−1 のとき、x2+x=−1x^2+x = -1x2+x=−1 より、x2+x+1=0x^2+x+1 = 0x2+x+1=0x=−1±12−4(1)(1)2(1)x = \frac{-1 \pm \sqrt{1^2 - 4(1)(1)}}{2(1)}x=2(1)−1±12−4(1)(1)x=−1±−32x = \frac{-1 \pm \sqrt{-3}}{2}x=2−1±−3x=−1±i32x = \frac{-1 \pm i\sqrt{3}}{2}x=2−1±i3(2) x(x+1)(x−2)(x+3)=−9x(x+1)(x-2)(x+3) = -9x(x+1)(x−2)(x+3)=−9x(x+3)(x+1)(x−2)=−9x(x+3)(x+1)(x-2) = -9x(x+3)(x+1)(x−2)=−9(x2+3x)(x2−x−2)=−9(x^2+3x)(x^2-x-2) = -9(x2+3x)(x2−x−2)=−9(x2+3x)(x2−x−2)=−9(x^2+3x)(x^2-x-2)=-9(x2+3x)(x2−x−2)=−9(x2+3x)(x2+3x−4x−2)=−9(x^2+3x)(x^2+3x -4x-2)=-9(x2+3x)(x2+3x−4x−2)=−9ここで、 x2+x−2=ux^2 + x - 2 = ux2+x−2=u とおくと、(x2+3x)(x2+x−2+2x)=−9(x^2 + 3x)(x^2+x-2+2x)= -9(x2+3x)(x2+x−2+2x)=−9x(x+3)(x+1)(x−2)=−9x(x+3)(x+1)(x-2)=-9x(x+3)(x+1)(x−2)=−9(x2+3x)(x2−x−2)=−9(x^2+3x)(x^2-x-2)=-9(x2+3x)(x2−x−2)=−9(x2+3x)(x2+3x−4x−2)=−9(x^2+3x)(x^2+3x-4x-2)=-9(x2+3x)(x2+3x−4x−2)=−9(x2+3x)2−4x(x2+3x)−2(x2+3x)=−9(x^2+3x)^2 - 4x(x^2+3x)-2(x^2+3x)=-9(x2+3x)2−4x(x2+3x)−2(x2+3x)=−9x2+3x=tx^2+3x = tx2+3x=tとおくとx(x+3)(x+1)(x−2)=x(x+3)(x2−x−2)=(x2+3x)(x2−x−2)=−9x(x+3)(x+1)(x-2)=x(x+3)(x^2-x-2) = (x^2+3x)(x^2-x-2)=-9x(x+3)(x+1)(x−2)=x(x+3)(x2−x−2)=(x2+3x)(x2−x−2)=−9x(x+3)(x+1)(x−2)=−9x(x+3)(x+1)(x-2) = -9x(x+3)(x+1)(x−2)=−9 よりx(x+3)(x+1)(x−2)=(x2+3x)(x2−x−2)=−9x(x+3)(x+1)(x-2) = (x^2+3x)(x^2-x-2) = -9x(x+3)(x+1)(x−2)=(x2+3x)(x2−x−2)=−9(x2+3x)(x2−x−2)+9=0(x^2+3x)(x^2-x-2)+9 = 0(x2+3x)(x2−x−2)+9=0x(x+3)(x+1)(x−2)+9=(x2+3x)(x2−x−2)+9=0x(x+3)(x+1)(x-2)+9 = (x^2+3x)(x^2-x-2)+9 = 0x(x+3)(x+1)(x−2)+9=(x2+3x)(x2−x−2)+9=0x(x+1)(x−2)(x+3)+9=x(x−2)(x+1)(x+3)+9=(x2−2x)(x2+4x+3)+9=x4+4x3+3x2−2x3−8x2−6x+9=x4+2x3−5x2−6x+9=0x(x+1)(x-2)(x+3)+9 = x(x-2)(x+1)(x+3)+9 = (x^2-2x)(x^2+4x+3)+9 = x^4+4x^3+3x^2-2x^3-8x^2-6x+9 = x^4+2x^3-5x^2-6x+9 = 0x(x+1)(x−2)(x+3)+9=x(x−2)(x+1)(x+3)+9=(x2−2x)(x2+4x+3)+9=x4+4x3+3x2−2x3−8x2−6x+9=x4+2x3−5x2−6x+9=0x(x+1)(x−2)(x+3)+9=(x2+x)(x2+x−6)+9x(x+1)(x-2)(x+3)+9 = (x^2+x)(x^2+x-6)+9x(x+1)(x−2)(x+3)+9=(x2+x)(x2+x−6)+9x2+x=tx^2+x = tx2+x=t とおくと、t(t−6)+9=0t(t-6)+9=0t(t−6)+9=0t2−6t+9=0t^2 - 6t+9=0t2−6t+9=0(t−3)2=0(t-3)^2=0(t−3)2=0t=3t=3t=3x2+x=3x^2+x=3x2+x=3x2+x−3=0x^2+x-3=0x2+x−3=0x=−1±1−4(1)(−3)2=−1±132x = \frac{-1\pm\sqrt{1-4(1)(-3)}}{2} = \frac{-1\pm\sqrt{13}}{2}x=2−1±1−4(1)(−3)=2−1±133. 最終的な答え(1) x=−1±212,−1±i32x = \frac{-1 \pm \sqrt{21}}{2}, \frac{-1 \pm i\sqrt{3}}{2}x=2−1±21,2−1±i3(2) x=−1±132x = \frac{-1 \pm \sqrt{13}}{2}x=2−1±13