与えられた3つの式を因数分解します。 (1) $(x^2+2x)(x^2+2x-2)-3$ (2) $a^2(b-c)+b^2(c-a)+c^2(a-b)$ (3) $2x^2+5xy-3y^2-x+11y-6$代数学因数分解多項式2025/6/15はい、承知しました。以下の形式で解答します。1. 問題の内容与えられた3つの式を因数分解します。(1) (x2+2x)(x2+2x−2)−3(x^2+2x)(x^2+2x-2)-3(x2+2x)(x2+2x−2)−3(2) a2(b−c)+b2(c−a)+c2(a−b)a^2(b-c)+b^2(c-a)+c^2(a-b)a2(b−c)+b2(c−a)+c2(a−b)(3) 2x2+5xy−3y2−x+11y−62x^2+5xy-3y^2-x+11y-62x2+5xy−3y2−x+11y−62. 解き方の手順(1)x2+2x=Ax^2+2x = Ax2+2x=A と置くと、(x2+2x)(x2+2x−2)−3=A(A−2)−3=A2−2A−3(x^2+2x)(x^2+2x-2)-3 = A(A-2)-3 = A^2-2A-3(x2+2x)(x2+2x−2)−3=A(A−2)−3=A2−2A−3A2−2A−3=(A−3)(A+1)A^2-2A-3 = (A-3)(A+1)A2−2A−3=(A−3)(A+1)AAA を元に戻すと、(x2+2x−3)(x2+2x+1)=(x+3)(x−1)(x+1)2(x^2+2x-3)(x^2+2x+1) = (x+3)(x-1)(x+1)^2(x2+2x−3)(x2+2x+1)=(x+3)(x−1)(x+1)2(2)a2(b−c)+b2(c−a)+c2(a−b)=a2b−a2c+b2c−b2a+c2a−c2ba^2(b-c)+b^2(c-a)+c^2(a-b) = a^2b - a^2c + b^2c - b^2a + c^2a - c^2ba2(b−c)+b2(c−a)+c2(a−b)=a2b−a2c+b2c−b2a+c2a−c2b=a2b−a2c+b2c−b2a+c2a−c2b=(b−c)a2−(b2−c2)a+(b2c−bc2)= a^2b - a^2c + b^2c - b^2a + c^2a - c^2b = (b-c)a^2 - (b^2-c^2)a + (b^2c-bc^2)=a2b−a2c+b2c−b2a+c2a−c2b=(b−c)a2−(b2−c2)a+(b2c−bc2)=(b−c)a2−(b+c)(b−c)a+bc(b−c)=(b−c)[a2−(b+c)a+bc]= (b-c)a^2 - (b+c)(b-c)a + bc(b-c) = (b-c)[a^2 - (b+c)a + bc]=(b−c)a2−(b+c)(b−c)a+bc(b−c)=(b−c)[a2−(b+c)a+bc]=(b−c)(a−b)(a−c)=−(a−b)(b−c)(c−a)= (b-c)(a-b)(a-c) = -(a-b)(b-c)(c-a)=(b−c)(a−b)(a−c)=−(a−b)(b−c)(c−a)(3)2x2+5xy−3y2−x+11y−6=2x2+(5y−1)x−(3y2−11y+6)2x^2+5xy-3y^2-x+11y-6 = 2x^2 + (5y-1)x - (3y^2-11y+6)2x2+5xy−3y2−x+11y−6=2x2+(5y−1)x−(3y2−11y+6)3y2−11y+6=(3y−2)(y−3)3y^2-11y+6 = (3y-2)(y-3)3y2−11y+6=(3y−2)(y−3)2x2+(5y−1)x−(3y−2)(y−3)=(2x−(y−3))(x+(3y−2))2x^2 + (5y-1)x - (3y-2)(y-3) = (2x-(y-3))(x+(3y-2))2x2+(5y−1)x−(3y−2)(y−3)=(2x−(y−3))(x+(3y−2))=(2x−y+3)(x+3y−2)= (2x-y+3)(x+3y-2)=(2x−y+3)(x+3y−2)3. 最終的な答え(1) (x+3)(x−1)(x+1)2(x+3)(x-1)(x+1)^2(x+3)(x−1)(x+1)2(2) −(a−b)(b−c)(c−a)-(a-b)(b-c)(c-a)−(a−b)(b−c)(c−a)(3) (2x−y+3)(x+3y−2)(2x-y+3)(x+3y-2)(2x−y+3)(x+3y−2)