$x = \frac{\sqrt{10} + \sqrt{2}}{2}$、 $y = \frac{\sqrt{10} - \sqrt{2}}{2}$のとき、$x^2 + xy + y^2$の値を求めよ。代数学式の計算平方根式の値2025/6/151. 問題の内容x=10+22x = \frac{\sqrt{10} + \sqrt{2}}{2}x=210+2、 y=10−22y = \frac{\sqrt{10} - \sqrt{2}}{2}y=210−2のとき、x2+xy+y2x^2 + xy + y^2x2+xy+y2の値を求めよ。2. 解き方の手順まず、x+yx+yx+y と xyxyxy の値を計算します。x+y=10+22+10−22=2102=10x + y = \frac{\sqrt{10} + \sqrt{2}}{2} + \frac{\sqrt{10} - \sqrt{2}}{2} = \frac{2\sqrt{10}}{2} = \sqrt{10}x+y=210+2+210−2=2210=10xy=10+22⋅10−22=(10)2−(2)24=10−24=84=2xy = \frac{\sqrt{10} + \sqrt{2}}{2} \cdot \frac{\sqrt{10} - \sqrt{2}}{2} = \frac{(\sqrt{10})^2 - (\sqrt{2})^2}{4} = \frac{10 - 2}{4} = \frac{8}{4} = 2xy=210+2⋅210−2=4(10)2−(2)2=410−2=48=2次に、x2+xy+y2x^2 + xy + y^2x2+xy+y2 を (x+y)2−xy(x+y)^2 - xy(x+y)2−xy と変形します。x2+xy+y2=(x+y)2−xyx^2 + xy + y^2 = (x+y)^2 - xyx2+xy+y2=(x+y)2−xyx2+xy+y2=(10)2−2x^2 + xy + y^2 = (\sqrt{10})^2 - 2x2+xy+y2=(10)2−2x2+xy+y2=10−2x^2 + xy + y^2 = 10 - 2x2+xy+y2=10−2x2+xy+y2=8x^2 + xy + y^2 = 8x2+xy+y2=83. 最終的な答え888