9人を3人ずつの3つのグループに分けるとき、分け方は何通りあるか求める問題です。

確率論・統計学組み合わせ場合の数順列
2025/6/27

1. 問題の内容

9人を3人ずつの3つのグループに分けるとき、分け方は何通りあるか求める問題です。

2. 解き方の手順

まず、9人から3人を選ぶ組み合わせを計算します。これは 9C3_9C_3 で表されます。
次に、残りの6人から3人を選ぶ組み合わせを計算します。これは 6C3_6C_3 で表されます。
最後に、残った3人は自動的に最後のグループになるので、組み合わせは1通りです。
これらの組み合わせの積を計算し、ただし、3つのグループの区別がないため、3!で割る必要があります。
計算式は以下のようになります。
9C3=9!3!(93)!=9!3!6!=9×8×73×2×1=84_9C_3 = \frac{9!}{3!(9-3)!} = \frac{9!}{3!6!} = \frac{9 \times 8 \times 7}{3 \times 2 \times 1} = 84
6C3=6!3!(63)!=6!3!3!=6×5×43×2×1=20_6C_3 = \frac{6!}{3!(6-3)!} = \frac{6!}{3!3!} = \frac{6 \times 5 \times 4}{3 \times 2 \times 1} = 20
9C3×6C3×3C33!=84×20×13×2×1=16806=280 \frac{_9C_3 \times _6C_3 \times _3C_3}{3!} = \frac{84 \times 20 \times 1}{3 \times 2 \times 1} = \frac{1680}{6} = 280

3. 最終的な答え

280通り

「確率論・統計学」の関連問題

袋の中に赤玉2個、白玉1個、青玉1個の計4個の玉が入っている。この袋から玉を1個取り出し、色を確認してから袋に戻すことを4回繰り返す。このとき、赤玉を取り出した回数を $m$ 回、取り出した玉の色の種...

確率期待値場合の数反復試行
2025/6/27

Aが3個、Bが4個の計7個の文字を1列に並べる。Aが2個以上続いて並ぶ並べ方を求める際、提示された解答には重複して数えているものがある。重複して数えている並べ方をすべて答える。提示された解答は、Aを2...

順列重複場合の数
2025/6/27

問題は2つあります。 問題7:2つのサイコロを同時に投げるとき、出る目が連続している確率を求めなさい。 問題8:1, 2, 3, 4, 5, 6, 7から異なる3つの数を取り、3桁の整数を作るとき、 ...

確率サイコロ組み合わせ整数倍数
2025/6/27

5人の生徒の小テストの得点$x$とその偏差の二乗$(x-\bar{x})^2$が表にまとめられている。ただし、$\bar{x}$は変量$x$の平均値である。このとき、変量$x$の平均値と分散を求める。

平均分散統計データの分析
2025/6/27

A, B, Cの3人が的に向かって矢を1本ずつ射る。それぞれの命中率は $1/2, 1/3, 1/4$ である。このとき、AとBの2人の射た矢が的に命中して、Cの射た矢は的に命中しない確率と、3人のう...

確率独立事象余事象
2025/6/27

座標平面上の4点 A(0, 1), B(0, 0), C(1, 0), D(1, 1) を頂点とする正方形がある。点 Q は正方形の頂点上を 1 秒ごとに隣の頂点へ移動する。点 Q は x 軸と平行な...

確率確率過程漸化式行列
2025/6/27

5人の生徒の小テストの得点 $x$ と、その偏差の二乗 $(x-\bar{x})^2$ の表が与えられています。ここで、$\bar{x}$ は $x$ の平均値を表します。表の一部の値が $a, b,...

平均分散統計偏差
2025/6/27

1個のサイコロを投げるとき、次の事象を集合で表す。 (1) 3の倍数の目が出る (2) 4以下の目が出る

確率集合サイコロ事象
2025/6/27

(4) 右図のような道路のある町で、A地点からB地点まで最短経路で行くとき、次の問いに答えなさい。 (1) A地点からB地点までの最短経路は全部で何通りあるか。 (2) A地点からB地点までの最短経路...

組み合わせ最短経路場合の数
2025/6/27

与えられた画像に書かれた複数の確率・組合せの問題を解きます。具体的には、次の問題です。 (1) 7人(男子3人、女子4人)から3人を選ぶ場合の数を求める。 ① 男女の区別をしない場合。 ...

組み合わせ順列場合の数組合せ
2025/6/27