$\int_{0}^{1} \log(1+x) dx$ を計算せよ。解析学積分部分積分対数関数2025/6/291. 問題の内容∫01log(1+x)dx\int_{0}^{1} \log(1+x) dx∫01log(1+x)dx を計算せよ。2. 解き方の手順この積分は部分積分を用いて計算します。部分積分の公式は ∫udv=uv−∫vdu\int u dv = uv - \int v du∫udv=uv−∫vdu です。u=log(1+x)u = \log(1+x)u=log(1+x) と dv=dxdv = dxdv=dx とおくと、du=11+xdxdu = \frac{1}{1+x}dxdu=1+x1dx と v=xv = xv=x となります。したがって、∫01log(1+x)dx=[xlog(1+x)]01−∫01x1+xdx\int_{0}^{1} \log(1+x) dx = [x\log(1+x)]_{0}^{1} - \int_{0}^{1} \frac{x}{1+x} dx∫01log(1+x)dx=[xlog(1+x)]01−∫011+xxdxここで、∫01x1+xdx\int_{0}^{1} \frac{x}{1+x} dx∫011+xxdx を計算します。x1+x=x+1−11+x=1−11+x\frac{x}{1+x} = \frac{x+1-1}{1+x} = 1 - \frac{1}{1+x}1+xx=1+xx+1−1=1−1+x1したがって、∫01x1+xdx=∫01(1−11+x)dx=[x−log(1+x)]01=(1−log(2))−(0−log(1))=1−log(2)\int_{0}^{1} \frac{x}{1+x} dx = \int_{0}^{1} (1 - \frac{1}{1+x}) dx = [x - \log(1+x)]_{0}^{1} = (1 - \log(2)) - (0 - \log(1)) = 1 - \log(2)∫011+xxdx=∫01(1−1+x1)dx=[x−log(1+x)]01=(1−log(2))−(0−log(1))=1−log(2)よって、∫01log(1+x)dx=[xlog(1+x)]01−(1−log(2))=(1⋅log(2)−0⋅log(1))−(1−log(2))=log(2)−1+log(2)=2log(2)−1\int_{0}^{1} \log(1+x) dx = [x\log(1+x)]_{0}^{1} - (1 - \log(2)) = (1 \cdot \log(2) - 0 \cdot \log(1)) - (1 - \log(2)) = \log(2) - 1 + \log(2) = 2\log(2) - 1∫01log(1+x)dx=[xlog(1+x)]01−(1−log(2))=(1⋅log(2)−0⋅log(1))−(1−log(2))=log(2)−1+log(2)=2log(2)−13. 最終的な答え2log(2)−12\log(2) - 12log(2)−1