半径が6cm、中心角が270°のおうぎ形の弧の長さを求める問題です。

幾何学おうぎ形弧の長さ角度
2025/7/1

1. 問題の内容

半径が6cm、中心角が270°のおうぎ形の弧の長さを求める問題です。

2. 解き方の手順

おうぎ形の弧の長さを求める公式は以下の通りです。
l=2πr×θ360l = 2 \pi r \times \frac{\theta}{360}
ここで、ll は弧の長さ、rr は半径、θ\theta は中心角です。
この問題では、r=6r = 6 cm、θ=270\theta = 270°なので、公式に代入すると、
l=2π×6×270360l = 2 \pi \times 6 \times \frac{270}{360}
l=12π×34l = 12\pi \times \frac{3}{4}
l=9πl = 9\pi

3. 最終的な答え

おうぎ形の弧の長さは 9π9\pi cmです。

「幾何学」の関連問題

空間内に2点 $A(-6, 5, 0)$、$B(2, -7, 4)$ と直線 $l: \frac{x-1}{2} = \frac{y+1}{2} = z+3$ が与えられている。 (1) 2点A, B...

空間ベクトル直線の方程式ねじれの位置距離
2025/7/1

3つの3次元ベクトル $\vec{a} = (1, -2, 3)$, $\vec{b} = (3, -4, 1)$, $\vec{c} = (2, -1, x)$ が与えられている。 (1) ベクトル...

ベクトル内積外積スカラー三重積球面平面接する
2025/7/1

与えられた立体の体積を求める問題です。

体積直方体立体図形
2025/7/1

平行四辺形ABCDにおいて、三角形ABCの内部に点P、三角形ADCの内部に点Qがある。 $\vec{AP}+3\vec{BP}+2\vec{CP}=\vec{0}$、 $3\vec{AQ}+4\vec...

ベクトル面積比平行四辺形三角形
2025/7/1

図のような立体の体積を求める問題です。図形は直方体から直方体をくり抜いたような形をしています。

体積直方体空間図形
2025/7/1

xy平面上の2つの円 $x^2 + y^2 = 1$ と $x^2 + y^2 - 2ax - 6y + a^2 - 7 = 0$ が異なる2点A, Bを共有するような正の定数aの条件を求め、そのとき...

交点弦の長さ座標平面
2025/7/1

与えられた立体の体積を求める問題です。立体は直方体2つを組み合わせた形をしています。それぞれの直方体の寸法が与えられています。

体積直方体3次元
2025/7/1

2つの直線 $y = -3\sqrt{3}x$ と $y = \frac{\sqrt{3}}{2}x$ のなす角 $\theta$ ($0 < \theta < \frac{\pi}{2}$) を求め...

角度直線三角関数
2025/7/1

点$(x, y)$を、$x$軸, $y$軸, 原点に関して対称移動したときの点の座標と、関数$y = f(x)$を$x$軸, $y$軸, 原点に関して対称移動したときの関数を求める問題です。

座標対称移動関数
2025/7/1

xy平面上の2つの円 $x^2 + y^2 = 1$ と $x^2 + y^2 - 8x - 2ay + a^2 - 9 = 0$ が異なる2点A, Bを共有するような正の定数aの条件を求め、さらに線...

交点共通弦距離二次方程式
2025/7/1