$a = \frac{4}{3\sqrt{2} - \sqrt{10}}$ とする。 $a$ の分母を有理化し、簡単にせよ。

代数学有理化平方根式の計算
2025/7/3

1. 問題の内容

a=43210a = \frac{4}{3\sqrt{2} - \sqrt{10}} とする。 aa の分母を有理化し、簡単にせよ。

2. 解き方の手順

分母を有理化するために、32103\sqrt{2} - \sqrt{10} の共役な複素数である 32+103\sqrt{2} + \sqrt{10} を分母と分子にかけます。
a=43210×32+1032+10a = \frac{4}{3\sqrt{2} - \sqrt{10}} \times \frac{3\sqrt{2} + \sqrt{10}}{3\sqrt{2} + \sqrt{10}}
a=4(32+10)(32)2(10)2a = \frac{4(3\sqrt{2} + \sqrt{10})}{(3\sqrt{2})^2 - (\sqrt{10})^2}
a=4(32+10)9×210a = \frac{4(3\sqrt{2} + \sqrt{10})}{9 \times 2 - 10}
a=4(32+10)1810a = \frac{4(3\sqrt{2} + \sqrt{10})}{18 - 10}
a=4(32+10)8a = \frac{4(3\sqrt{2} + \sqrt{10})}{8}
a=32+102a = \frac{3\sqrt{2} + \sqrt{10}}{2}

3. 最終的な答え

32+102\frac{3\sqrt{2} + \sqrt{10}}{2}

「代数学」の関連問題

2次方程式 $6(x-3)^2 = 30$ を解きます。

二次方程式平方根方程式の解
2025/7/3

与えられた式 $6x + 5 - 5y$ について、項と係数を求める問題です。

多項式係数
2025/7/3

2次関数 $y = x^2 + (a-1)x + 9$ のグラフが $x$ 軸と接するとき、定数 $a$ の値を求める問題です。

二次関数判別式二次方程式グラフ接する
2025/7/3

3点(1, 0), (0, 3), (-1, 10)を通る2次関数 $y=ax^2+bx+c$ を求めよ。

二次関数連立方程式代入解法
2025/7/3

二次方程式 $x^2 + 5x - 2 = 0$ を、$(x+p)^2 = q$ の形に変形して解を求める。

二次方程式平方完成解の公式
2025/7/3

$(\sqrt{2} + \sqrt{3} - 2)(\sqrt{2} - \sqrt{3} - 2)$ を計算し、その結果を $a - b\sqrt{c}$ の形で表す問題です。

根号式の計算展開
2025/7/3

与えられた二次方程式を解く問題です。具体的には、以下の4つの二次方程式を解きます。 (1) $x^2 - 4x = 3$ (2) $x^2 + 8x = -14$ (3) $x^2 + 2x - 5 ...

二次方程式平方完成解の公式
2025/7/3

画像に書かれた方程式を解く問題です。方程式は次の通りです。 $0.08C \times 75 = 0.2 \times 4.2 \times 10^3 \times (-3) + 50 \times ...

方程式一次方程式計算
2025/7/3

兄の所持金は弟の所持金より370円多い。2人とも160円のノートを1冊ずつ買ったところ、兄の残金は弟の残金の2倍になった。はじめの兄と弟の所持金の合計を求める。

一次方程式文章問題連立方程式
2025/7/3

問題は、画像に示された複数の文章のうち、「イ 600mの道のりを分速xmで歩くときにかかる時間y分」について、xとyの関係を式で表す問題です。

比例反比例分数式一次関数
2025/7/3