与えられた数 $a = \frac{4}{3\sqrt{2} - \sqrt{10}}$ について、 (1) $a$ の分母を有理化し、簡略化する。 (2) $a + \frac{2}{a}$ の値と $a^2 + \frac{4}{a^2}$ の値を求める。

代数学式の計算分母の有理化平方根式の値
2025/7/3
## 解答

1. 問題の内容

与えられた数 a=43210a = \frac{4}{3\sqrt{2} - \sqrt{10}} について、
(1) aa の分母を有理化し、簡略化する。
(2) a+2aa + \frac{2}{a} の値と a2+4a2a^2 + \frac{4}{a^2} の値を求める。

2. 解き方の手順

(1) aa の分母を有理化する。分母の共役な複素数 32+103\sqrt{2} + \sqrt{10} を分子と分母に掛ける。
a=43210=4(32+10)(3210)(32+10)a = \frac{4}{3\sqrt{2} - \sqrt{10}} = \frac{4(3\sqrt{2} + \sqrt{10})}{(3\sqrt{2} - \sqrt{10})(3\sqrt{2} + \sqrt{10})}
分母を展開すると、
(3210)(32+10)=(32)2(10)2=1810=8(3\sqrt{2} - \sqrt{10})(3\sqrt{2} + \sqrt{10}) = (3\sqrt{2})^2 - (\sqrt{10})^2 = 18 - 10 = 8
したがって、
a=4(32+10)8=32+102a = \frac{4(3\sqrt{2} + \sqrt{10})}{8} = \frac{3\sqrt{2} + \sqrt{10}}{2}
(2) a+2aa + \frac{2}{a} の値を求める。まず 2a\frac{2}{a} を計算する。
2a=232+102=432+10\frac{2}{a} = \frac{2}{\frac{3\sqrt{2} + \sqrt{10}}{2}} = \frac{4}{3\sqrt{2} + \sqrt{10}}
分母を有理化する。分母の共役な複素数 32103\sqrt{2} - \sqrt{10} を分子と分母に掛ける。
2a=4(3210)(32+10)(3210)=4(3210)8=32102\frac{2}{a} = \frac{4(3\sqrt{2} - \sqrt{10})}{(3\sqrt{2} + \sqrt{10})(3\sqrt{2} - \sqrt{10})} = \frac{4(3\sqrt{2} - \sqrt{10})}{8} = \frac{3\sqrt{2} - \sqrt{10}}{2}
a+2a=32+102+32102=622=32a + \frac{2}{a} = \frac{3\sqrt{2} + \sqrt{10}}{2} + \frac{3\sqrt{2} - \sqrt{10}}{2} = \frac{6\sqrt{2}}{2} = 3\sqrt{2}
次に、a2+4a2a^2 + \frac{4}{a^2} の値を求める。
(a+2a)2=a2+2a2a+4a2=a2+4+4a2(a + \frac{2}{a})^2 = a^2 + 2 \cdot a \cdot \frac{2}{a} + \frac{4}{a^2} = a^2 + 4 + \frac{4}{a^2}
したがって、
a2+4a2=(a+2a)24a^2 + \frac{4}{a^2} = (a + \frac{2}{a})^2 - 4
a+2a=32a + \frac{2}{a} = 3\sqrt{2} なので、
a2+4a2=(32)24=184=14a^2 + \frac{4}{a^2} = (3\sqrt{2})^2 - 4 = 18 - 4 = 14

3. 最終的な答え

(1) a=32+102a = \frac{3\sqrt{2} + \sqrt{10}}{2}
(2) a+2a=32a + \frac{2}{a} = 3\sqrt{2}, a2+4a2=14a^2 + \frac{4}{a^2} = 14

「代数学」の関連問題

2次方程式 $6(x-3)^2 = 30$ を解きます。

二次方程式平方根方程式の解
2025/7/3

与えられた式 $6x + 5 - 5y$ について、項と係数を求める問題です。

多項式係数
2025/7/3

2次関数 $y = x^2 + (a-1)x + 9$ のグラフが $x$ 軸と接するとき、定数 $a$ の値を求める問題です。

二次関数判別式二次方程式グラフ接する
2025/7/3

3点(1, 0), (0, 3), (-1, 10)を通る2次関数 $y=ax^2+bx+c$ を求めよ。

二次関数連立方程式代入解法
2025/7/3

二次方程式 $x^2 + 5x - 2 = 0$ を、$(x+p)^2 = q$ の形に変形して解を求める。

二次方程式平方完成解の公式
2025/7/3

$(\sqrt{2} + \sqrt{3} - 2)(\sqrt{2} - \sqrt{3} - 2)$ を計算し、その結果を $a - b\sqrt{c}$ の形で表す問題です。

根号式の計算展開
2025/7/3

与えられた二次方程式を解く問題です。具体的には、以下の4つの二次方程式を解きます。 (1) $x^2 - 4x = 3$ (2) $x^2 + 8x = -14$ (3) $x^2 + 2x - 5 ...

二次方程式平方完成解の公式
2025/7/3

画像に書かれた方程式を解く問題です。方程式は次の通りです。 $0.08C \times 75 = 0.2 \times 4.2 \times 10^3 \times (-3) + 50 \times ...

方程式一次方程式計算
2025/7/3

兄の所持金は弟の所持金より370円多い。2人とも160円のノートを1冊ずつ買ったところ、兄の残金は弟の残金の2倍になった。はじめの兄と弟の所持金の合計を求める。

一次方程式文章問題連立方程式
2025/7/3

問題は、画像に示された複数の文章のうち、「イ 600mの道のりを分速xmで歩くときにかかる時間y分」について、xとyの関係を式で表す問題です。

比例反比例分数式一次関数
2025/7/3