We are asked to find the derivative of the function $f(x) = (x+2)^x$ using logarithmic differentiation.

AnalysisDifferentiationLogarithmic DifferentiationChain RuleProduct RuleDerivatives
2025/4/1

1. Problem Description

We are asked to find the derivative of the function f(x)=(x+2)xf(x) = (x+2)^x using logarithmic differentiation.

2. Solution Steps

Let y=(x+2)xy = (x+2)^x.
Take the natural logarithm of both sides:
lny=ln((x+2)x) \ln y = \ln((x+2)^x)
lny=xln(x+2) \ln y = x \ln(x+2)
Now, differentiate both sides with respect to xx:
ddx(lny)=ddx(xln(x+2)) \frac{d}{dx}(\ln y) = \frac{d}{dx}(x \ln(x+2))
Using the chain rule on the left side, we get:
1ydydx=ddx(xln(x+2)) \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}(x \ln(x+2))
Using the product rule on the right side:
1ydydx=(1)(ln(x+2))+x1x+2(1) \frac{1}{y} \frac{dy}{dx} = (1)(\ln(x+2)) + x \cdot \frac{1}{x+2} \cdot (1)
1ydydx=ln(x+2)+xx+2 \frac{1}{y} \frac{dy}{dx} = \ln(x+2) + \frac{x}{x+2}
Multiply both sides by yy:
dydx=y(ln(x+2)+xx+2) \frac{dy}{dx} = y \left( \ln(x+2) + \frac{x}{x+2} \right)
Since y=(x+2)xy = (x+2)^x, we substitute yy back into the equation:
dydx=(x+2)x(xx+2+ln(x+2)) \frac{dy}{dx} = (x+2)^x \left( \frac{x}{x+2} + \ln(x+2) \right)

3. Final Answer

The derivative of the function is (2+x)x(x2+x+ln(2+x))(2+x)^x \left( \frac{x}{2+x} + \ln(2+x) \right).
Therefore, the answer is A.

Related problems in "Analysis"

We are asked to evaluate the double integral $\int_{-1}^{4}\int_{1}^{2} (x+y^2) \, dy \, dx$.

Double IntegralsIntegration
2025/6/5

The problem asks us to evaluate the double integral $\int_0^2 \int_1^3 x^2 y \, dy \, dx$.

Double IntegralIntegrationCalculus
2025/6/5

We are asked to evaluate the double integral $\iint_R f(x, y) dA$, where $R = \{(x, y): 1 \le x \le ...

Double IntegralsPiecewise FunctionsIntegrationMultivariable Calculus
2025/6/5

We are asked to evaluate the double integral $\iint_R f(x, y) \, dA$, where $R = \{(x, y): 1 \le x \...

Double IntegralsPiecewise FunctionsIntegration
2025/6/5

We are asked to evaluate the indefinite integral $\int xe^{-2x} dx$.

IntegrationIntegration by PartsIndefinite Integral
2025/6/5

We are asked to evaluate the triple integral $I = \int_0^{\log_e 2} \int_0^x \int_0^{x+\log_e y} e^{...

Multiple IntegralsIntegration by PartsCalculus
2025/6/4

The problem asks us to evaluate the following limit: $ \lim_{x\to\frac{\pi}{3}} \frac{\sqrt{3}(\frac...

LimitsTrigonometryCalculus
2025/6/4

We need to evaluate the limit of the expression $(x + \sqrt{x^2 - 9})$ as $x$ approaches negative in...

LimitsCalculusFunctionsConjugateInfinity
2025/6/4

The problem asks to prove that $\int_0^1 \ln(\frac{\varphi - x^2}{\varphi + x^2}) \frac{dx}{x\sqrt{1...

Definite IntegralsCalculusIntegration TechniquesTrigonometric SubstitutionImproper Integrals
2025/6/4

The problem defines a harmonic function as a function of two variables that satisfies Laplace's equa...

Partial DerivativesLaplace's EquationHarmonic FunctionMultivariable Calculus
2025/6/4