We are asked to evaluate the definite integral $\int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \frac{1}{4x^2 + 49} dx$.

AnalysisDefinite IntegralIntegrationTrigonometric SubstitutionInverse Trigonometric Functions
2025/4/1

1. Problem Description

We are asked to evaluate the definite integral 72373214x2+49dx\int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \frac{1}{4x^2 + 49} dx.

2. Solution Steps

First, rewrite the integral as follows:
72373214x2+49dx=72373214(x2+494)dx=147237321x2+(72)2dx\int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \frac{1}{4x^2 + 49} dx = \int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \frac{1}{4(x^2 + \frac{49}{4})} dx = \frac{1}{4} \int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \frac{1}{x^2 + (\frac{7}{2})^2} dx
We know that 1x2+a2dx=1aarctan(xa)+C\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan(\frac{x}{a}) + C. Here, a=72a = \frac{7}{2}.
Therefore,
147237321x2+(72)2dx=14[172arctan(x72)]723732=14[27arctan(2x7)]723732=114[arctan(2x7)]723732\frac{1}{4} \int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \frac{1}{x^2 + (\frac{7}{2})^2} dx = \frac{1}{4} \left[ \frac{1}{\frac{7}{2}} \arctan(\frac{x}{\frac{7}{2}}) \right]_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} = \frac{1}{4} \left[ \frac{2}{7} \arctan(\frac{2x}{7}) \right]_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} = \frac{1}{14} \left[ \arctan(\frac{2x}{7}) \right]_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}}
Now, evaluate the expression at the upper and lower limits:
114[arctan(2(732)7)arctan(2(723)7)]=114[arctan(737)arctan(773)]=114[arctan(3)arctan(13)]\frac{1}{14} \left[ \arctan(\frac{2(\frac{7\sqrt{3}}{2})}{7}) - \arctan(\frac{2(\frac{7}{2\sqrt{3}})}{7}) \right] = \frac{1}{14} \left[ \arctan(\frac{7\sqrt{3}}{7}) - \arctan(\frac{7}{7\sqrt{3}}) \right] = \frac{1}{14} \left[ \arctan(\sqrt{3}) - \arctan(\frac{1}{\sqrt{3}}) \right]
We know that arctan(3)=π3\arctan(\sqrt{3}) = \frac{\pi}{3} and arctan(13)=π6\arctan(\frac{1}{\sqrt{3}}) = \frac{\pi}{6}.
Therefore, 114[π3π6]=114[2ππ6]=114[π6]=π84\frac{1}{14} \left[ \frac{\pi}{3} - \frac{\pi}{6} \right] = \frac{1}{14} \left[ \frac{2\pi - \pi}{6} \right] = \frac{1}{14} \left[ \frac{\pi}{6} \right] = \frac{\pi}{84}.

3. Final Answer

π84\frac{\pi}{84}

Related problems in "Analysis"

We are asked to evaluate the limit of a vector-valued function as $t$ approaches 0. The vector-value...

LimitsVector CalculusMultivariable CalculusLimits of Vector-Valued Functions
2025/4/11

We are given a function $f(x)$ defined as a determinant: $f(x) = \begin{vmatrix} \sin x & \cos x & \...

DeterminantsDerivativesTrigonometryCalculus
2025/4/10

The problem consists of several exercises. Exercise 5 asks us to consider two functions, $f(x) = 2\c...

TrigonometryTrigonometric IdentitiesFunctions
2025/4/10

We are asked to evaluate the following integral: $\int_0^{+\infty} \frac{dx}{(1+x)(\pi^2 + \ln^2 x)}...

Definite IntegralIntegration TechniquesSubstitutionCalculus
2025/4/7

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3