We are asked to evaluate the definite integral $\int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \frac{1}{4x^2 + 49} dx$.

AnalysisDefinite IntegralIntegrationTrigonometric SubstitutionInverse Trigonometric Functions
2025/4/1

1. Problem Description

We are asked to evaluate the definite integral 72373214x2+49dx\int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \frac{1}{4x^2 + 49} dx.

2. Solution Steps

First, rewrite the integral as follows:
72373214x2+49dx=72373214(x2+494)dx=147237321x2+(72)2dx\int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \frac{1}{4x^2 + 49} dx = \int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \frac{1}{4(x^2 + \frac{49}{4})} dx = \frac{1}{4} \int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \frac{1}{x^2 + (\frac{7}{2})^2} dx
We know that 1x2+a2dx=1aarctan(xa)+C\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan(\frac{x}{a}) + C. Here, a=72a = \frac{7}{2}.
Therefore,
147237321x2+(72)2dx=14[172arctan(x72)]723732=14[27arctan(2x7)]723732=114[arctan(2x7)]723732\frac{1}{4} \int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \frac{1}{x^2 + (\frac{7}{2})^2} dx = \frac{1}{4} \left[ \frac{1}{\frac{7}{2}} \arctan(\frac{x}{\frac{7}{2}}) \right]_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} = \frac{1}{4} \left[ \frac{2}{7} \arctan(\frac{2x}{7}) \right]_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} = \frac{1}{14} \left[ \arctan(\frac{2x}{7}) \right]_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}}
Now, evaluate the expression at the upper and lower limits:
114[arctan(2(732)7)arctan(2(723)7)]=114[arctan(737)arctan(773)]=114[arctan(3)arctan(13)]\frac{1}{14} \left[ \arctan(\frac{2(\frac{7\sqrt{3}}{2})}{7}) - \arctan(\frac{2(\frac{7}{2\sqrt{3}})}{7}) \right] = \frac{1}{14} \left[ \arctan(\frac{7\sqrt{3}}{7}) - \arctan(\frac{7}{7\sqrt{3}}) \right] = \frac{1}{14} \left[ \arctan(\sqrt{3}) - \arctan(\frac{1}{\sqrt{3}}) \right]
We know that arctan(3)=π3\arctan(\sqrt{3}) = \frac{\pi}{3} and arctan(13)=π6\arctan(\frac{1}{\sqrt{3}}) = \frac{\pi}{6}.
Therefore, 114[π3π6]=114[2ππ6]=114[π6]=π84\frac{1}{14} \left[ \frac{\pi}{3} - \frac{\pi}{6} \right] = \frac{1}{14} \left[ \frac{2\pi - \pi}{6} \right] = \frac{1}{14} \left[ \frac{\pi}{6} \right] = \frac{\pi}{84}.

3. Final Answer

π84\frac{\pi}{84}

Related problems in "Analysis"

The problem asks to calculate the limits of various functions, indicating when they do not exist and...

LimitsContinuityEpsilon-Delta DefinitionCalculus
2025/6/6

The problem is to find the first derivative, $y'$, and the second derivative, $y''$, of $y$ with res...

Implicit DifferentiationDerivativesCalculus
2025/6/6

We are asked to evaluate the limit $\lim_{x \to 2} \frac{x^4 - 16}{168(\sqrt{x+7} - 3)}$.

LimitsCalculusRationalizationAlgebraic Manipulation
2025/6/6

We are asked to evaluate the double integral $\int_{-1}^{4}\int_{1}^{2} (x+y^2) \, dy \, dx$.

Double IntegralsIntegration
2025/6/5

The problem asks us to evaluate the double integral $\int_0^2 \int_1^3 x^2 y \, dy \, dx$.

Double IntegralIntegrationCalculus
2025/6/5

We are asked to evaluate the double integral $\iint_R f(x, y) dA$, where $R = \{(x, y): 1 \le x \le ...

Double IntegralsPiecewise FunctionsIntegrationMultivariable Calculus
2025/6/5

We are asked to evaluate the double integral $\iint_R f(x, y) \, dA$, where $R = \{(x, y): 1 \le x \...

Double IntegralsPiecewise FunctionsIntegration
2025/6/5

We are asked to evaluate the indefinite integral $\int xe^{-2x} dx$.

IntegrationIntegration by PartsIndefinite Integral
2025/6/5

We are asked to evaluate the triple integral $I = \int_0^{\log_e 2} \int_0^x \int_0^{x+\log_e y} e^{...

Multiple IntegralsIntegration by PartsCalculus
2025/6/4

The problem asks us to evaluate the following limit: $ \lim_{x\to\frac{\pi}{3}} \frac{\sqrt{3}(\frac...

LimitsTrigonometryCalculus
2025/6/4