First, rewrite the integral as follows:
∫2372734x2+491dx=∫2372734(x2+449)1dx=41∫237273x2+(27)21dx We know that ∫x2+a21dx=a1arctan(ax)+C. Here, a=27. Therefore,
41∫237273x2+(27)21dx=41[271arctan(27x)]237273=41[72arctan(72x)]237273=141[arctan(72x)]237273 Now, evaluate the expression at the upper and lower limits:
141[arctan(72(273))−arctan(72(237))]=141[arctan(773)−arctan(737)]=141[arctan(3)−arctan(31)] We know that arctan(3)=3π and arctan(31)=6π. Therefore, 141[3π−6π]=141[62π−π]=141[6π]=84π.