$\frac{\sqrt{3}}{\sqrt{54}} + \frac{5}{3\sqrt{2}}$ を計算し、簡単にせよ。算数平方根計算有理化分数2025/7/131. 問題の内容354+532\frac{\sqrt{3}}{\sqrt{54}} + \frac{5}{3\sqrt{2}}543+325 を計算し、簡単にせよ。2. 解き方の手順まず、54\sqrt{54}54 を簡単にします。54=9×6=9×6=36\sqrt{54} = \sqrt{9 \times 6} = \sqrt{9} \times \sqrt{6} = 3\sqrt{6}54=9×6=9×6=36次に、354\frac{\sqrt{3}}{\sqrt{54}}543 を簡単にします。354=336=3323=132\frac{\sqrt{3}}{\sqrt{54}} = \frac{\sqrt{3}}{3\sqrt{6}} = \frac{\sqrt{3}}{3\sqrt{2}\sqrt{3}} = \frac{1}{3\sqrt{2}}543=363=3233=321次に、132\frac{1}{3\sqrt{2}}321 を有理化します。132=132×22=23×2=26\frac{1}{3\sqrt{2}} = \frac{1}{3\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{3 \times 2} = \frac{\sqrt{2}}{6}321=321×22=3×22=62次に、532\frac{5}{3\sqrt{2}}325 を有理化します。532=532×22=523×2=526\frac{5}{3\sqrt{2}} = \frac{5}{3\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{5\sqrt{2}}{3 \times 2} = \frac{5\sqrt{2}}{6}325=325×22=3×252=652最後に、354+532\frac{\sqrt{3}}{\sqrt{54}} + \frac{5}{3\sqrt{2}}543+325 を計算します。354+532=26+526=2+526=626=2\frac{\sqrt{3}}{\sqrt{54}} + \frac{5}{3\sqrt{2}} = \frac{\sqrt{2}}{6} + \frac{5\sqrt{2}}{6} = \frac{\sqrt{2} + 5\sqrt{2}}{6} = \frac{6\sqrt{2}}{6} = \sqrt{2}543+325=62+652=62+52=662=23. 最終的な答え2\sqrt{2}2