定積分 $\int_{0}^{\frac{\pi}{2}} (\sin x - \frac{1}{\sqrt{2}})^2 dx$ を求める。解析学定積分三角関数積分計算2025/7/181. 問題の内容定積分 ∫0π2(sinx−12)2dx\int_{0}^{\frac{\pi}{2}} (\sin x - \frac{1}{\sqrt{2}})^2 dx∫02π(sinx−21)2dx を求める。2. 解き方の手順まず、積分の中身を展開します。(sinx−12)2=sin2x−2⋅12sinx+12=sin2x−2sinx+12(\sin x - \frac{1}{\sqrt{2}})^2 = \sin^2 x - 2 \cdot \frac{1}{\sqrt{2}} \sin x + \frac{1}{2} = \sin^2 x - \sqrt{2} \sin x + \frac{1}{2}(sinx−21)2=sin2x−2⋅21sinx+21=sin2x−2sinx+21次に、sin2x\sin^2 xsin2x を半角の公式で変形します。sin2x=1−cos2x2\sin^2 x = \frac{1 - \cos 2x}{2}sin2x=21−cos2xしたがって、被積分関数は、1−cos2x2−2sinx+12=1−12cos2x−2sinx\frac{1 - \cos 2x}{2} - \sqrt{2} \sin x + \frac{1}{2} = 1 - \frac{1}{2} \cos 2x - \sqrt{2} \sin x21−cos2x−2sinx+21=1−21cos2x−2sinxしたがって、定積分は∫0π2(1−12cos2x−2sinx)dx\int_{0}^{\frac{\pi}{2}} (1 - \frac{1}{2} \cos 2x - \sqrt{2} \sin x) dx∫02π(1−21cos2x−2sinx)dx=∫0π21dx−12∫0π2cos2xdx−2∫0π2sinxdx= \int_{0}^{\frac{\pi}{2}} 1 dx - \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos 2x dx - \sqrt{2} \int_{0}^{\frac{\pi}{2}} \sin x dx=∫02π1dx−21∫02πcos2xdx−2∫02πsinxdx=[x]0π2−12[12sin2x]0π2−2[−cosx]0π2= [x]_{0}^{\frac{\pi}{2}} - \frac{1}{2} [\frac{1}{2} \sin 2x]_{0}^{\frac{\pi}{2}} - \sqrt{2} [-\cos x]_{0}^{\frac{\pi}{2}}=[x]02π−21[21sin2x]02π−2[−cosx]02π=(π2−0)−14(sinπ−sin0)−2(−cosπ2+cos0)= (\frac{\pi}{2} - 0) - \frac{1}{4} (\sin \pi - \sin 0) - \sqrt{2} (-\cos \frac{\pi}{2} + \cos 0)=(2π−0)−41(sinπ−sin0)−2(−cos2π+cos0)=π2−14(0−0)−2(−0+1)= \frac{\pi}{2} - \frac{1}{4} (0 - 0) - \sqrt{2} (-0 + 1)=2π−41(0−0)−2(−0+1)=π2−2= \frac{\pi}{2} - \sqrt{2}=2π−23. 最終的な答えπ2−2\frac{\pi}{2} - \sqrt{2}2π−2