関数 $y = \frac{1}{\sin x \cos x}$ を微分する。解析学微分三角関数合成関数の微分積の微分2025/7/221. 問題の内容関数 y=1sinxcosxy = \frac{1}{\sin x \cos x}y=sinxcosx1 を微分する。2. 解き方の手順まず、与えられた関数を y=(sinxcosx)−1y = (\sin x \cos x)^{-1}y=(sinxcosx)−1 と書き換えます。次に、積の公式を用いて、sinxcosx\sin x \cos xsinxcosx を変形します。sinxcosx=12(2sinxcosx)=12sin2x\sin x \cos x = \frac{1}{2} (2 \sin x \cos x) = \frac{1}{2} \sin 2xsinxcosx=21(2sinxcosx)=21sin2xしたがって、y=112sin2x=2sin2x=2(sin2x)−1y = \frac{1}{\frac{1}{2} \sin 2x} = \frac{2}{\sin 2x} = 2 (\sin 2x)^{-1}y=21sin2x1=sin2x2=2(sin2x)−1 となります。次に、合成関数の微分法を用いて微分します。dydx=2⋅(−1)(sin2x)−2⋅ddx(sin2x)\frac{dy}{dx} = 2 \cdot (-1) (\sin 2x)^{-2} \cdot \frac{d}{dx} (\sin 2x)dxdy=2⋅(−1)(sin2x)−2⋅dxd(sin2x)=−2(sin2x)−2⋅cos2x⋅2= -2 (\sin 2x)^{-2} \cdot \cos 2x \cdot 2=−2(sin2x)−2⋅cos2x⋅2=−4cos2xsin22x= -4 \frac{\cos 2x}{\sin^2 2x}=−4sin22xcos2xsin2x=2sinxcosx\sin 2x = 2 \sin x \cos xsin2x=2sinxcosx であるから、sin22x=4sin2xcos2x\sin^2 2x = 4 \sin^2 x \cos^2 xsin22x=4sin2xcos2xしたがって、dydx=−4cos2x4sin2xcos2x=−cos2xsin2xcos2x\frac{dy}{dx} = -4 \frac{\cos 2x}{4 \sin^2 x \cos^2 x} = - \frac{\cos 2x}{\sin^2 x \cos^2 x}dxdy=−44sin2xcos2xcos2x=−sin2xcos2xcos2xcos2x=cos2x−sin2x\cos 2x = \cos^2 x - \sin^2 xcos2x=cos2x−sin2x であるから、dydx=−cos2x−sin2xsin2xcos2x=−cos2xsin2xcos2x+sin2xsin2xcos2x\frac{dy}{dx} = - \frac{\cos^2 x - \sin^2 x}{\sin^2 x \cos^2 x} = - \frac{\cos^2 x}{\sin^2 x \cos^2 x} + \frac{\sin^2 x}{\sin^2 x \cos^2 x}dxdy=−sin2xcos2xcos2x−sin2x=−sin2xcos2xcos2x+sin2xcos2xsin2x=−1sin2x+1cos2x=1cos2x−1sin2x= - \frac{1}{\sin^2 x} + \frac{1}{\cos^2 x} = \frac{1}{\cos^2 x} - \frac{1}{\sin^2 x}=−sin2x1+cos2x1=cos2x1−sin2x1=sec2x−csc2x= \sec^2 x - \csc^2 x=sec2x−csc2x別の方法として、y=1sinxcosxy = \frac{1}{\sin x \cos x}y=sinxcosx1 を直接微分する方法もあります。dydx=−1(sinxcosx)2⋅(cosxcosx+sinx(−sinx))\frac{dy}{dx} = - \frac{1}{(\sin x \cos x)^2} \cdot (\cos x \cos x + \sin x (-\sin x))dxdy=−(sinxcosx)21⋅(cosxcosx+sinx(−sinx))=−cos2x−sin2xsin2xcos2x=−cos2xsin2xcos2x+sin2xsin2xcos2x= - \frac{\cos^2 x - \sin^2 x}{\sin^2 x \cos^2 x} = - \frac{\cos^2 x}{\sin^2 x \cos^2 x} + \frac{\sin^2 x}{\sin^2 x \cos^2 x}=−sin2xcos2xcos2x−sin2x=−sin2xcos2xcos2x+sin2xcos2xsin2x=−1sin2x+1cos2x=1cos2x−1sin2x= - \frac{1}{\sin^2 x} + \frac{1}{\cos^2 x} = \frac{1}{\cos^2 x} - \frac{1}{\sin^2 x}=−sin2x1+cos2x1=cos2x1−sin2x1=sec2x−csc2x= \sec^2 x - \csc^2 x=sec2x−csc2xさらに、cos2x=2cos2x−1=1−2sin2x\cos 2x = 2 \cos^2 x - 1 = 1 - 2 \sin^2 xcos2x=2cos2x−1=1−2sin2x を使うと、dydx=−2cos2x−1sin2xcos2x=−2cos2xsin2xcos2x+1sin2xcos2x=−2sin2x+1sin2xcos2x\frac{dy}{dx} = - \frac{2 \cos^2 x - 1}{\sin^2 x \cos^2 x} = - \frac{2 \cos^2 x}{\sin^2 x \cos^2 x} + \frac{1}{\sin^2 x \cos^2 x} = - \frac{2}{\sin^2 x} + \frac{1}{\sin^2 x \cos^2 x}dxdy=−sin2xcos2x2cos2x−1=−sin2xcos2x2cos2x+sin2xcos2x1=−sin2x2+sin2xcos2x1dydx=−1−2sin2xsin2xcos2x=−1sin2xcos2x+2cos2x\frac{dy}{dx} = - \frac{1 - 2 \sin^2 x}{\sin^2 x \cos^2 x} = - \frac{1}{\sin^2 x \cos^2 x} + \frac{2}{\cos^2 x}dxdy=−sin2xcos2x1−2sin2x=−sin2xcos2x1+cos2x23. 最終的な答えdydx=sec2x−csc2x\frac{dy}{dx} = \sec^2 x - \csc^2 xdxdy=sec2x−csc2xまたはdydx=−4cos2xsin22x\frac{dy}{dx} = -4 \frac{\cos 2x}{\sin^2 2x}dxdy=−4sin22xcos2x