与えられた問題は、次の定積分の値を求めることです。 $\int_{0}^{\infty} \frac{dx}{x^4 + 4}$解析学定積分積分部分分数分解因数分解2025/7/221. 問題の内容与えられた問題は、次の定積分の値を求めることです。∫0∞dxx4+4\int_{0}^{\infty} \frac{dx}{x^4 + 4}∫0∞x4+4dx2. 解き方の手順まず、x4+4x^4 + 4x4+4 を因数分解します。x4+4=x4+4x2+4−4x2=(x2+2)2−(2x)2=(x2+2x+2)(x2−2x+2)x^4 + 4 = x^4 + 4x^2 + 4 - 4x^2 = (x^2 + 2)^2 - (2x)^2 = (x^2 + 2x + 2)(x^2 - 2x + 2)x4+4=x4+4x2+4−4x2=(x2+2)2−(2x)2=(x2+2x+2)(x2−2x+2)次に、被積分関数を部分分数分解します。1x4+4=Ax+Bx2+2x+2+Cx+Dx2−2x+2\frac{1}{x^4 + 4} = \frac{Ax + B}{x^2 + 2x + 2} + \frac{Cx + D}{x^2 - 2x + 2}x4+41=x2+2x+2Ax+B+x2−2x+2Cx+D両辺に x4+4x^4 + 4x4+4 を掛けると、1=(Ax+B)(x2−2x+2)+(Cx+D)(x2+2x+2)1 = (Ax + B)(x^2 - 2x + 2) + (Cx + D)(x^2 + 2x + 2)1=(Ax+B)(x2−2x+2)+(Cx+D)(x2+2x+2)1=Ax3−2Ax2+2Ax+Bx2−2Bx+2B+Cx3+2Cx2+2Cx+Dx2+2Dx+2D1 = Ax^3 - 2Ax^2 + 2Ax + Bx^2 - 2Bx + 2B + Cx^3 + 2Cx^2 + 2Cx + Dx^2 + 2Dx + 2D1=Ax3−2Ax2+2Ax+Bx2−2Bx+2B+Cx3+2Cx2+2Cx+Dx2+2Dx+2D1=(A+C)x3+(−2A+B+2C+D)x2+(2A−2B+2C+2D)x+(2B+2D)1 = (A+C)x^3 + (-2A + B + 2C + D)x^2 + (2A - 2B + 2C + 2D)x + (2B + 2D)1=(A+C)x3+(−2A+B+2C+D)x2+(2A−2B+2C+2D)x+(2B+2D)係数を比較すると、A+C=0A+C = 0A+C=0−2A+B+2C+D=0-2A + B + 2C + D = 0−2A+B+2C+D=02A−2B+2C+2D=02A - 2B + 2C + 2D = 02A−2B+2C+2D=02B+2D=12B + 2D = 12B+2D=1A=−CA = -CA=−C, B+D=12B+D = \frac{1}{2}B+D=21−2A+B−2A+D=0 ⟹ −4A+B+D=0 ⟹ −4A+12=0 ⟹ A=18-2A + B - 2A + D = 0 \implies -4A + B + D = 0 \implies -4A + \frac{1}{2} = 0 \implies A = \frac{1}{8}−2A+B−2A+D=0⟹−4A+B+D=0⟹−4A+21=0⟹A=812A−2B−2A+2D=0 ⟹ −2B+2D=0 ⟹ B=D2A - 2B - 2A + 2D = 0 \implies -2B + 2D = 0 \implies B = D2A−2B−2A+2D=0⟹−2B+2D=0⟹B=DB=D=14B = D = \frac{1}{4}B=D=41A=18A = \frac{1}{8}A=81, C=−18C = -\frac{1}{8}C=−81, B=14B = \frac{1}{4}B=41, D=14D = \frac{1}{4}D=411x4+4=18x+14x2+2x+2+−18x+14x2−2x+2\frac{1}{x^4 + 4} = \frac{\frac{1}{8}x + \frac{1}{4}}{x^2 + 2x + 2} + \frac{-\frac{1}{8}x + \frac{1}{4}}{x^2 - 2x + 2}x4+41=x2+2x+281x+41+x2−2x+2−81x+411x4+4=18(x+2x2+2x+2+−x+2x2−2x+2)\frac{1}{x^4 + 4} = \frac{1}{8} \left( \frac{x + 2}{x^2 + 2x + 2} + \frac{-x + 2}{x^2 - 2x + 2} \right)x4+41=81(x2+2x+2x+2+x2−2x+2−x+2)1x4+4=18(x+1x2+2x+2+1(x+1)2+1+−x+1x2−2x+2+1(x−1)2+1)\frac{1}{x^4 + 4} = \frac{1}{8} \left( \frac{x + 1}{x^2 + 2x + 2} + \frac{1}{(x+1)^2 + 1} + \frac{-x + 1}{x^2 - 2x + 2} + \frac{1}{(x-1)^2 + 1} \right)x4+41=81(x2+2x+2x+1+(x+1)2+11+x2−2x+2−x+1+(x−1)2+11)∫0∞1x4+4dx=18∫0∞(x+1(x+1)2+1+−x+1(x−1)2+1)dx\int_{0}^{\infty} \frac{1}{x^4 + 4} dx = \frac{1}{8} \int_{0}^{\infty} \left( \frac{x + 1}{(x+1)^2 + 1} + \frac{-x + 1}{(x-1)^2 + 1} \right) dx∫0∞x4+41dx=81∫0∞((x+1)2+1x+1+(x−1)2+1−x+1)dx∫x+1x2+2x+2dx=12ln(x2+2x+2)\int \frac{x+1}{x^2 + 2x + 2} dx = \frac{1}{2} \ln(x^2 + 2x + 2)∫x2+2x+2x+1dx=21ln(x2+2x+2)∫−x+1x2−2x+2dx=−12ln(x2−2x+2)\int \frac{-x+1}{x^2 - 2x + 2} dx = -\frac{1}{2} \ln(x^2 - 2x + 2)∫x2−2x+2−x+1dx=−21ln(x2−2x+2)∫0∞dxx4+4=18[12ln(x2+2x+2)−12ln(x2−2x+2)]0∞\int_{0}^{\infty} \frac{dx}{x^4 + 4} = \frac{1}{8} \left[ \frac{1}{2} \ln(x^2 + 2x + 2) - \frac{1}{2} \ln(x^2 - 2x + 2) \right]_{0}^{\infty}∫0∞x4+4dx=81[21ln(x2+2x+2)−21ln(x2−2x+2)]0∞=116[ln(x2+2x+2x2−2x+2)]0∞= \frac{1}{16} \left[ \ln \left( \frac{x^2 + 2x + 2}{x^2 - 2x + 2} \right) \right]_{0}^{\infty}=161[ln(x2−2x+2x2+2x+2)]0∞limx→∞ln(x2+2x+2x2−2x+2)=ln1=0\lim_{x \to \infty} \ln \left( \frac{x^2 + 2x + 2}{x^2 - 2x + 2} \right) = \ln 1 = 0limx→∞ln(x2−2x+2x2+2x+2)=ln1=0ln(0+0+20−0+2)=ln1=0\ln \left( \frac{0 + 0 + 2}{0 - 0 + 2} \right) = \ln 1 = 0ln(0−0+20+0+2)=ln1=0∫1(x−1)2+1dx=arctan(x−1)\int \frac{1}{(x-1)^2 + 1} dx = \arctan(x-1)∫(x−1)2+11dx=arctan(x−1)∫1(x+1)2+1dx=arctan(x+1)\int \frac{1}{(x+1)^2 + 1} dx = \arctan(x+1)∫(x+1)2+11dx=arctan(x+1)∫0∞dxx4+4=18[arctan(x+1)−arctan(1−x)]0∞\int_{0}^{\infty} \frac{dx}{x^4 + 4} = \frac{1}{8} \left[ \arctan(x+1) - \arctan(1-x) \right]_{0}^{\infty}∫0∞x4+4dx=81[arctan(x+1)−arctan(1−x)]0∞=18[(π2−(−π2))−(π4−π4)]=18(π−0)= \frac{1}{8} \left[ \left( \frac{\pi}{2} - \left( -\frac{\pi}{2} \right) \right) - \left( \frac{\pi}{4} - \frac{\pi}{4} \right) \right] = \frac{1}{8} \left( \pi - 0 \right)=81[(2π−(−2π))−(4π−4π)]=81(π−0)=18[12arctan(x+1)+12arctan(x−1)]0∞= \frac{1}{8} \left[ \frac{1}{2} \arctan(x+1) + \frac{1}{2}\arctan(x-1)\right]_0^\infty=81[21arctan(x+1)+21arctan(x−1)]0∞x4+4=(x2+2x+2)(x2−2x+2)x^4 + 4 = (x^2 + 2x + 2)(x^2 - 2x + 2)x4+4=(x2+2x+2)(x2−2x+2)Let x=2ux = 2ux=2u then dx=2dudx = 2dudx=2du.∫0∞2du16u4+4=12∫0∞du4u4+1\int_0^{\infty} \frac{2du}{16u^4 + 4} = \frac{1}{2} \int_0^{\infty} \frac{du}{4u^4 + 1}∫0∞16u4+42du=21∫0∞4u4+1duWe have the formula ∫0∞dxx4+a4=π22a3\int_0^\infty \frac{dx}{x^4 + a^4} = \frac{\pi}{2\sqrt{2} a^3}∫0∞x4+a4dx=22a3π∫0∞dxx4+4=∫0∞dxx4+22=π22(2)32=π42=π2822=π216\int_0^\infty \frac{dx}{x^4 + 4} = \int_0^\infty \frac{dx}{x^4 + 2^2} = \frac{\pi}{2\sqrt{2}(2)^{\frac{3}{2}}} = \frac{\pi}{4\sqrt{2}} = \frac{\pi \sqrt{2}}{8\sqrt{2}\sqrt{2}} = \frac{\pi \sqrt{2}}{16}∫0∞x4+4dx=∫0∞x4+22dx=22(2)23π=42π=822π2=16π2Here a4=4a^4 = 4a4=4 so a=2a = \sqrt{2}a=2.∫0∞dxx4+4=π42\int_0^{\infty} \frac{dx}{x^4 + 4} = \frac{\pi}{4 \sqrt{2}}∫0∞x4+4dx=42π3. 最終的な答えπ8\frac{\pi}{8}8π